Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Duensing is active.

Publication


Featured researches published by Stefan Duensing.


Oncogene | 2001

Biological activities and molecular targets of the human papillomavirus E7 oncoprotein

Karl Münger; John R. Basile; Stefan Duensing; Alexandra Eichten; Sonia L. Gonzalez; Miranda Grace; Valerie Zacny

The human papillomavirus (HPV) E7 protein is one of only two viral proteins that remain expressed in HPV-associated human cancers. HPV E7 proteins share structural and functional similarities with oncoproteins encoded by other small DNA tumor viruses such as adenovirus E1A and SV40 large tumor antigen. The HPV E7 protein plays an important role in the viral life cycle by subverting the tight link between cellular differentiation and proliferation in normal epithelium, thus allowing the virus to replicate in differentiating epithelial cells that would have normally withdrawn from the cell division cycle. The transforming activities of E7 largely reflect this important function.


The American Journal of Surgical Pathology | 2001

Ki-67, cyclin E, and p16ink4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia

Jeffrey T. Keating; Aida Cviko; Sabine Riethdorf; Lutz Riethdorf; Bradley J. Quade; Deqin Sun; Stefan Duensing; Ellen E. Sheets; Karl Münger; Christopher P. Crum

Prior studies of Ki-67, cyclin E, and p16 expression have suggested that these biomarkers may be preferentially expressed in cervical neoplasia. This study examined and compared the distribution of staining for these three antigens in 1) normal and reactive epithelial changes, 2) diagnostically challenging cases (atypical metaplasia and atypical atrophy), 3) squamous intraepithelial lesions (SIL), and 4) high-and low-risk human papilloma virus (HPV) type-specific SIL. One hundred four epithelial foci from 99 biopsies were studied, including low-grade squamous intraepithelial lesions (LSIL; 24), high-grade squamous intraepithelial lesions (HSIL; 36), mature or immature (metaplastic) squamous epithelium (29), and atrophic or metaplastic epithelium with atypia (15). Cases were scored positive for Ki-67 expression if expression extended above the basal one third of the epithelium, for cyclin E if moderate to strong staining was present, and for p16 if moderate to strong diffuse or focal staining was present. HPV status was scored by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of extracted DNA. Immunohistochemical findings were correlated with histologic and viral data. Overall, a histologic diagnosis of SIL correlated strongly with all of the biomarkers used (p <0.001). Positive scores for Ki-67, cyclin E, and p16 were seen in 68.4%, 96.7%, and 100% of LSILs and 94.7%, 91.6%, and 100% of HSILs, respectively. Positive predictive values of these three biomarkers for HPV were 82.4%, 89.5%, and 91.4%, respectively. The positive predictive value for HPV of either cyclin E or p16 was 88.7%. Strong diffuse staining for p16 was significantly associated with high-risk HPV-associated lesions. Normal or reactive epithelial changes scored positive for the three biomarkers in 7.7%, 8.0%, and 12%, respectively. Limitations in specificity included minimal or no suprabasal staining for Ki-67 in immature condylomas and occasional suprabasal staining of reactive epithelial changes (10%), diffuse weak nuclear cyclin E staining in some normal or metaplastic epithelia, and diffuse weak basal p16 staining and occasional stronger focal positivity in normal epithelia. Ki-67, cyclin E, and p16 are complementary surrogate biomarkers for HPV-related preinvasive squamous cervical disease. (Because cyclin E and p16 are most sensitive for LSIL and HSIL [including high-risk HPV], respectively, use of these biomarkers in combination for resolving diagnostic problems, with an appreciation of potential background staining, is recommended.)


Journal of Clinical Investigation | 2002

PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis

Dipak Panigrahy; Samuel Singer; Lucy Q. Shen; Catherine Butterfield; Deborah A. Freedman; Emy J. Chen; Marsha A. Moses; Susan Kilroy; Stefan Duensing; Christopher D. M. Fletcher; Jonathan A. Fletcher; Lynn Hlatky; Philip Hahnfeldt; Judah Folkman; Arja Kaipainen

Several drugs approved for a variety of indications have been shown to exhibit antiangiogenic effects. Our study focuses on the PPARgamma ligand rosiglitazone, a compound widely used in the treatment of type 2 diabetes. We demonstrate, for the first time to our knowledge, that PPARgamma is highly expressed in tumor endothelium and is activated by rosiglitazone in cultured endothelial cells. Furthermore, we show that rosiglitazone suppresses primary tumor growth and metastasis by both direct and indirect antiangiogenic effects. Rosiglitazone inhibits bovine capillary endothelial cell but not tumor cell proliferation at low doses in vitro and decreases VEGF production by tumor cells. In our in vivo studies, rosiglitazone suppresses angiogenesis in the chick chorioallantoic membrane, in the avascular cornea, and in a variety of primary tumors. These results suggest that PPARgamma ligands may be useful in treating angiogenic diseases such as cancer by inhibiting angiogenesis.


International Journal of Cancer | 2004

Mechanisms of genomic instability in human cancer: Insights from studies with human papillomavirus oncoproteins

Stefan Duensing; Karl Münger

Genomic instability is a hallmark of most human cancers including high‐risk human papillomavirus (HPV)‐associated anogenital neoplasia. The two HPV‐encoded oncoproteins, E6 and E7, can independently induce chromosomal abnormalities. We summarize the current state of knowledge concerning HPV‐induced genomic instability and discuss its significance in the context of human carcinogenesis.


Journal of Virology | 2003

Quantitative Role of the Human Papillomavirus Type 16 E5 Gene during the Productive Stage of the Viral Life Cycle

Sybil M. Genther; Stephanie Sterling; Stefan Duensing; Karl Münger; Carol A. Sattler; Paul F. Lambert

ABSTRACT Human papillomaviruses (HPVs) are small circular DNA viruses that cause warts. Infection with high-risk anogenital HPVs, such as HPV type 16 (HPV16), is associated with human cancers, specifically cervical cancer. The life cycle of HPVs is intimately tied to the differentiation status of the host epithelium and has two distinct stages: the nonproductive stage and the productive stage. In the nonproductive stage, which arises in the poorly differentiated basal epithelial compartment of a wart, the virus maintains itself as a low-copy-number nuclear plasmid. In the productive stage, which arises as the host cell undergoes terminal differentiation, viral DNA is amplified; the capsid genes, L1 and L2, are expressed; and progeny virions are produced. This stage of the viral life cycle relies on the ability of the virus to reprogram the differentiated cells to support DNA synthesis. Papillomaviruses encode multiple oncoproteins, E5, E6, and E7. In the present study, we analyze the role of one of these viral oncogenes, E5, in the viral life cycle. To assess the role of E5 in the HPV16 life cycle, we introduced wild-type (WT) or E5 mutant HPV16 genomes into NIKS, a keratinocyte cell line that supports the papillomavirus life cycle. By culturing these cells under conditions that allow them to remain undifferentiated, a state similar to that of basal epithelial cells, we determined that E5 does not play an essential role in the nonproductive stage of the HPV16 life cycle. To determine if E5 plays a role in the productive stage of the viral life cycle, we cultured keratinocyte populations in organotypic raft cultures, which promote the differentiation and stratification of epithelial cells. We found that cells harboring E5 mutant genomes displayed a quantitative reduction in the percentage of suprabasal cells undergoing DNA synthesis, compared to cells containing WT HPV16 DNA. This reduction in DNA synthesis, however, did not prevent amplification of viral DNA in the differentiated cellular compartment. Likewise, late viral gene expression and the perturbation of normal keratinocyte differentiation were retained in cells harboring E5 mutant genomes. These data demonstrate that E5 plays a subtle role during the productive stage of the HPV16 life cycle.


Oncogene | 2007

Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates

Anette Duensing; Ying Liu; Sophie A. Perdreau; Julia Kleylein-Sohn; Erich A. Nigg; Stefan Duensing

Abnormal centrosome numbers are detected in virtually all cancers. The molecular mechanisms that underlie centrosome amplification, however, are poorly characterized. Based on the model that each maternal centriole serves as a template for the formation of one and only one daughter centriole per cell division cycle, the prevailing view is that centriole overduplication arises from successive rounds of centriole reproduction. Here, we provide evidence that a single maternal centriole can concurrently generate multiple daughter centrioles. This mechanism was initially identified in cells treated with the peptide vinyl sulfone proteasome inhibitor Z-L3VS. We subsequently found that the formation of more than one daughter at maternal centrioles requires cyclin E/cyclin-dependent kinase 2 as well as Polo-like kinase 4 and that overexpression of these proteins mimics this phenotype in the absence of a proteasome inhibitor. Moreover, we show that the human papillomavirus type 16 E7 oncoprotein stimulates aberrant daughter centriole numbers in part through the formation of more than one daughter centriole at single maternal templates. These results help to explain how oncogenic stimuli can rapidly induce abnormal centriole numbers within a single cell-division cycle and provide insights into the regulation of centriole duplication.


Oncogene | 2002

Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability

Stefan Duensing; Karl Münger

The majority of human cancers are genomically unstable, often with gains or losses of whole chromosomes. In high-risk human papillomavirus (HPV)-associated cervical neoplasia, the two HPV-encoded oncoproteins E6 and E7 have been implicated in mitotic infidelity by their ability to induce centrosome-related mitotic disturbances. However, the mechanisms by which HPV E6 and E7 subvert centrosome homeostasis are strikingly different. Whereas the E7 oncoprotein rapidly drives centrosome duplication errors in cells that appear phenotypically normal, expression of the HPV E6 oncoprotein results in an accumulation of supernumerary centrosomes in multinucleated cells. The primary centrosome duplication defect in HPV E7 expressing cells may be linked to the ability of E7 to disrupt regulatory nodes that govern both the host cell division cycle machinery and the initiation of centrosome duplication. Most importantly, the E7 oncoprotein has been shown to dysregulate cdk2 activity, a major determinant for the initiation of centrosome duplication. HPV-induced centrosome abnormalities, multipolar mitoses, and aneuploidy often occur at early stages during cervical carcinogenesis and increase with malignant conversion. These findings suggest that HPV oncoprotein-induced chromosomal instability increases the risk for genetic changes that may ultimately facilitate carcinogenic progression.


Journal of Virology | 2001

Centrosome Abnormalities and Genomic Instability by Episomal Expression of Human Papillomavirus Type 16 in Raft Cultures of Human Keratinocytes

Stefan Duensing; Anette Duensing; Elsa R. Flores; Anh Do; Paul F. Lambert; Karl Münger

ABSTRACT Primary human keratinocytes with ectopic expression of high-risk human papillomavirus (HPV) E6 and E7 oncoproteins display abnormal centrosome numbers, multipolar mitoses, and aneusomy. However, it has not been explored whether these abnormalities can occur in cells containing HPV episomes where E6 and E7 expression is under viral transcriptional control. Here, we demonstrate that centrosome abnormalities and genomic instability occur in organotypic raft cultures of human keratinocytes with episomal HPV-16 even at low copy numbers. We conclude that HPV-16 DNA, when maintained as an episome, can disturb centrosome homeostasis and subvert genomic integrity of the host cell during early stages of the viral infection.


Journal of Virology | 2003

Human Papillomavirus Type 16 E7 Oncoprotein Can Induce Abnormal Centrosome Duplication through a Mechanism Independent of Inactivation of Retinoblastoma Protein Family Members

Stefan Duensing; Karl Münger

ABSTRACT The human papillomavirus type 16 (HPV-16) E7 oncoprotein rapidly induces centrosome duplication errors in primary human cells, thereby increasing the propensity for multipolar mitoses, which can lead to chromosome missegregation and aneuploidy. We analyzed a series of HPV-16 E7 mutants and demonstrate that this biological activity of the E7 oncoprotein is mediated by sequences encompassing the core pRB binding site but is independent of its ability to inactivate the retinoblastoma tumor suppressor protein pRB and the related pocket proteins p107 and p130. In addition, interaction of E7 with the S4 subunit of the 26S proteasome and dysregulation of cdc25A transcription are also dispensable for the induction of centrosome duplication errors. Consistent with these results, expression of HPV-16 E7 induces abnormal centrosome duplication in a cell line that lacks functional pRB and in mouse embryo fibroblasts that are deficient for pRB, p107, and p130. These results demonstrate that the molecular mechanism whereby HPV-16 E7 induces centrosome duplication errors is independent of its ability to inactivate pRB, p107, and p130 or to interact with the S4 proteasome subunit.


Biochimica et Biophysica Acta | 2001

Centrosome abnormalities, genomic instability and carcinogenic progression

Stefan Duensing; Karl Münger

Centrosome abnormalities are a frequent finding in various malignant tumors. Since centrosomes form the poles of the mitotic spindle, these abnormalities have been implicated in chromosome missegregation and the generation of aneuploid cells which is commonly found in many human neoplasms. It is a matter of debate, however, whether centrosome alterations can drive cells into aneuploidy or simply reflect loss of genomic integrity by other mechanisms. Since these two models have fundamentally different implications for the diagnostic and prognostic value of centrosome abnormalities, we will discuss the relevance of abnormal centrosomes in the context of different oncogenic events as exemplified by high-risk human papillomavirus-associated carcinogenesis.

Collaboration


Dive into the Stefan Duensing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Spardy

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolando Cuevas

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Michelle Tseng

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Liu

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge