Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan E. H. Alexson is active.

Publication


Featured researches published by Stefan E. H. Alexson.


Progress in Lipid Research | 2002

The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism.

Mary C. Hunt; Stefan E. H. Alexson

Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. These enzymes are localized in almost all cellular compartments such as endoplasmic reticulum, cytosol, mitochondria and peroxisomes. Acyl-CoA thioesterases are highly regulated by peroxisome proliferator-activated receptors (PPARs), and other nutritional factors, which has led to the conclusion that they are involved in lipid metabolism. Although the physiological functions for these enzymes are not yet fully understood, recent cloning and more in-depth characterization of acyl-CoA thioesterases has assisted in discussion of putative functions for specific enzymes. Here we review the acyl-CoA thioesterases characterized to date and also address the diverse putative functions for these enzymes, such as in ligand supply for nuclear receptors, and regulation and termination of fatty acid oxidation in mitochondria and peroxisomes.


Biochemical Pharmacology | 2002

Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodulation caused by peroxisome proliferators in mice.

Qian Yang; Yi Xie; Stefan E. H. Alexson; B. Dean Nelson; Joseph W. DePierre

Peroxisome proliferators (PPs) are a large class of structurally diverse chemicals, which includes drugs designed to improve the metabolic abnormalities linking hypertriglyceridemia to diabetes, hyperglycemia, insulin-resistance and atherosclerosis. We have recently demonstrated that exposure of rodents to potent PPs indirectly causes a number of immunomodulating effects, resulting in severe adaptive immunosuppression. Since the peroxisome proliferator-activated receptor alpha (PPARalpha) plays a central role in mediating the pleiotropic responses exerted by PPs, we have compared here the immunomodulating effects of the PPs perfluorooctanoic acid (PFOA) and Wy-14,643 in wild-type and PPARalpha-null mice. The reductions in spleen weight and in the number of splenocytes caused by PP treatment in wild-type mice was not observed in PPARalpha-null mice. Furthermore, the reductions in thymus weight and in the number of thymocytes were potently attenuated in the latter animals. Similarly, the dramatic decreases in the size of the CD4(+)CD8(+) population of cells in the thymus and in the number of thymocytes in the S and G2/M phases of the cell cycle observed in wild-type mice administered PPs were much less extensive in PPARalpha-null mice. Finally, in contrast to the case of wild-type animals, the response of splenocytes isolated from the spleen of PP-treated PPARalpha-null mice to appropriate T- or B-cell activators in vitro was not reduced. Altogether, these data indicate that PPARalpha plays a major role in the immunomodulation caused by PPs. The possible relevance of these changes to the alterations in plasma lipids also caused by PPs is discussed.


Journal of Biological Chemistry | 1999

Peroxisome Proliferator-induced Long Chain Acyl-CoA Thioesterases Comprise a Highly Conserved Novel Multi-gene Family Involved in Lipid Metabolism

Mary C. Hunt; S. E. B. Nousiainen; M. K. Huttunen; K. E. Orii; L. T. Svensson; Stefan E. H. Alexson

Long chain acyl-CoA esters are important intermediates in degradation and synthesis of fatty acids, as well as having important functions in regulation of intermediary metabolism and gene expression. Although the physiological functions for most acyl-CoA thioesterases have not yet been elucidated, previous data suggest that these enzymes may be involved in lipid metabolism by modulation of cellular concentrations of acyl-CoAs and fatty acids. In line with this, we have cloned four highly homologous acyl-CoA thioesterase genes from mouse, showing multiple compartmental localizations. The nomenclature for these genes has tentatively been assigned as CTE-I (cytosolic), MTE-I (mitochondrial), and PTE-Ia and Ib (peroxisomal), based on the identification of putative targeting signals. Although the various isoenzymes show between 67% and 94% identity at amino acid level, each individual enzyme shows a specific tissue expression. Our data suggest that all four genes are located within a very narrow cluster on chromosome 12 in mouse, similar to a sequence cluster on human chromosome 14, which identified four genes homologous to the mouse thioesterase genes. Four related genes were also identified in Caenorhabditis elegans, all containing putative PTS1 targeting signals, suggesting that the ancestral type I thioesterase gene(s) is/are of peroxisomal origin. All four thioesterases are differentially expressed in tissues examined, but all are inducible at mRNA level by treatment with the peroxisome proliferator clofibrate, or during the physiological condition of fasting, both of which conditions cause a perturbation in overall lipid homeostasis. These results strongly support the existence of a novel multi-gene family cluster of mouse acyl-CoA thioesterases, each with a distinct function in lipid metabolism.


Journal of Biological Chemistry | 2005

The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate production in peroxisomes

Maria A. K. Westin; Mary C. Hunt; Stefan E. H. Alexson

Dicarboxylic acids are formed by ω-oxidation of fatty acids in the endoplasmic reticulum and degraded as the CoA ester via β-oxidation in peroxisomes. Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids, implying that acyl-CoA thioesterases (ACOTs), which hydrolyze CoA esters to the free acid and CoASH, are needed for the release of the free acids. Recent studies show that peroxisomes contain several acyl-CoA thioesterases with different functions. We have now expressed a peroxisomal acyl-CoA thioesterase with a previously unknown function, ACOT4, which we show is active on dicarboxylyl-CoA esters. We also expressed ACOT8, another peroxisomal acyl-CoA thioesterase that was previously shown to hydrolyze a large variety of CoA esters. Acot4 and Acot8 are both strongly expressed in kidney and liver and are also target genes for the peroxisome proliferator-activated receptor α. Enzyme activity measurements with expressed ACOT4 and ACOT8 show that both enzymes hydrolyze CoA esters of dicarboxylic acids with high activity but with strikingly different specificities. Whereas ACOT4 mainly hydrolyzes succinyl-CoA, ACOT8 preferentially hydrolyzes longer dicarboxylyl-CoA esters (glutaryl-CoA, adipyl-CoA, suberyl-CoA, sebacyl-CoA, and dodecanedioyl-CoA). The identification of a highly specific succinyl-CoA thioesterase in peroxisomes strongly suggests that peroxisomal β-oxidation of dicarboxylic acids leads to formation of succinate, at least under certain conditions, and that ACOT4 and ACOT8 are responsible for the termination of β-oxidation of dicarboxylic acids of medium-chain length with the concomitant release of the corresponding free acids.


Journal of Biological Chemistry | 2003

The Human Bile Acid-CoA:Amino Acid N-Acyltransferase Functions in the Conjugation of Fatty Acids to Glycine

James O'Byrne; Mary C. Hunt; Dilip K. Rai; Masayumi Saeki; Stefan E. H. Alexson

Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT (hBACAT) and identifying BACAT as a member of the type I acyl-CoA thioesterase gene family. We therefore hypothesized that hBACAT may also hydrolyze fatty acyl-CoAs and/or conjugate fatty acids to glycine. We show here that recombinant hBACAT also can hydrolyze long- and very long-chain saturated acyl-CoAs (mainly C16:0–C26:0) and by mass spectrometry verified that hBACAT also conjugates fatty acids to glycine. Tissue expression studies showed strong expression of BACAT in liver, gallbladder, and the proximal and distal intestine. However, BACAT is also expressed in a variety of tissues unrelated to bile acid formation and transport, suggesting important functions also in the regulation of intracellular levels of very long-chain fatty acids. Green fluorescent protein localization experiments in human skin fibroblasts showed that the hBACAT enzyme is mainly cytosolic. Therefore, the cytosolic BACAT enzyme may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids.


Biochimica et Biophysica Acta | 2012

The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism.

Mary C. Hunt; Marina I. Siponen; Stefan E. H. Alexson

The importance of peroxisomes in lipid metabolism is now well established and peroxisomes contain approximately 60 enzymes involved in these lipid metabolic pathways. Several acyl-CoA thioesterase enzymes (ACOTs) have been identified in peroxisomes that catalyze the hydrolysis of acyl-CoAs (short-, medium-, long- and very long-chain), bile acid-CoAs, and methyl branched-CoAs, to the free fatty acid and coenzyme A. A number of acyltransferase enzymes, which are structurally and functionally related to ACOTs, have also been identified in peroxisomes, which conjugate (or amidate) bile acid-CoAs and acyl-CoAs to amino acids, resulting in the production of amidated bile acids and fatty acids. The function of ACOTs is to act as auxiliary enzymes in the α- and β-oxidation of various lipids in peroxisomes. Human peroxisomes contain at least two ACOTs (ACOT4 and ACOT8) whereas mouse peroxisomes contain six ACOTs (ACOT3, 4, 5, 6, 8 and 12). Similarly, human peroxisomes contain one bile acid-CoA:amino acid N-acyltransferase (BAAT), whereas mouse peroxisomes contain three acyltransferases (BAAT and acyl-CoA:amino acid N-acyltransferases 1 and 2: ACNAT1 and ACNAT2). This review will focus on the human and mouse peroxisomal ACOT and acyltransferase enzymes identified to date and discuss their cellular localizations, emerging structural information and functions as auxiliary enzymes in peroxisomal metabolic pathways.


The FASEB Journal | 2006

Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs

Mary C. Hunt; Anna Rautanen; Maria A. K. Westin; L. Thomas Svensson; Stefan E. H. Alexson

The maintenance of cellular levels of free fatty acids and acyl‐CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl‐coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl‐CoAs to the free fatty acid and CoASH, and thereby have the potential to regulate intracellular levels of these compounds. We previously identified and characterized a mouse ACOT gene cluster comprised of six genes that apparently arose by gene duplications encoding acyl‐CoA thioesterases with localizations in cytosol (ACOT1), mitochondria (ACOT2), and peroxisomes (ACOT3‐6). However, the corresponding human gene cluster contains only three genes (ACOT1, ACOT2, and ACOT4) coding for full‐length thioesterase proteins, of which only one is peroxisomal (ACOT4). We therefore set out to characterize the human genes, and we show here that the human ACOT4 protein catalyzes the activities of three mouse peroxisomal ACOTs (ACOT3, 4, and 5), being active on succinyl‐CoA and medium to long chain acyl‐CoAs, while ACOT1 and ACOT2 carry out similar functions to the corresponding mouse genes. These data strongly suggest that the human ACOT4 gene has acquired the functions of three mouse genes by a functional convergent evolution that also provides an explanation for the unexpectedly low number of human genes.—Hunt, M. C., Rautanen, A., Westin, M. A. K., Svensson, L. T., Alexson, S. E. H. Analysis of the mouse and human acyl‐CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs. FASEB J. 20, 1855–1864 (2006)


Biochimica et Biophysica Acta | 1984

A direct comparison between peroxisomal and mitochondrial preferences for fatty-acyl β-oxidation predicts channelling of medium-chain and very-long-chain unsaturated fatty acids to peroxisomes

Stefan E. H. Alexson; Barbara Cannon

A well-characterized crude peroxisomal fraction from brown adipose tissue was used to compare peroxisomal beta-oxidation with beta-oxidation in isolated mitochondria. The apparent Km and chain-length specificity for peroxisomal (acyl-CoA) and mitochondrial (acyl-carnitine) beta-oxidation were determined with saturated C4-C22 fatty acyls and some unsaturated fatty acyls. Peroxisomes showed the lowest Km for medium-chain (9:0-10:0) and mono-unsaturated long-chain (16:1-22:1) fatty acids, and highest oxidation rates with lauroyl-CoA (12:0). Mitochondria showed the lowest Km for long-chain fatty acids (16:0-18:0) and highest oxidation rates with 12:0-16:0 and with 18:2. These in vitro results offer an explanation of previous results obtained in situ by Foerster et al. (Foerster, E.-C., Fährenkemper, T., Rabo, U., Graf, P. and Sies, H. (1981) Biochem. J. 196, 705-712) and indicate a role for peroxisomes in degradation of medium-chain and mono-unsaturated long-chain fatty acids. It is concluded that no mechanism, other than relative preferences, needs to be suggested for channelling of fatty acids between the two subcellular organelles.


Journal of Biological Chemistry | 1999

Rat Peroxisome Proliferator-activated Receptors and Brown Adipose Tissue Function during Cold Acclimatization

Hebe M. Guardiola-Diaz; Stefan Rehnmark; Nobuteru Usuda; Tatjana Albrektsen; Dorothee Feltkamp; Jan-Åke Gustafsson; Stefan E. H. Alexson

Brown adipose tissue (BAT) hyperplasia is a fundamental physiological response to cold; it involves an acute phase of mitotic cell growth followed by a prolonged differentiation phase. Peroxisome proliferator-activated receptors (PPARs) are key regulators of fatty acid metabolism and adipocyte differentiation and may therefore mediate important metabolic changes during non-shivering thermogenesis. In the present study we have investigated PPAR mRNA expression in relation to peroxisome proliferation in rat BAT during cold acclimatization. By immunoelectron microscopy we show that the number of peroxisomes per cytoplasmic volume and acyl-CoA oxidase immunolabeling density remained constant (thus increasing in parallel with tissue mass and cell number) during the initial proliferative phase and the acute thermogenic response but increased after 14 days of cold exposure, correlating with terminal differentiation of BAT. A pronounced decrease in BAT PPARα and PPARγ mRNA levels was found within hours of exposure to cold, which was reversed after 14 days, suggesting a role for either or both of these subtypes in the proliferation and induction of peroxisomes and peroxisomal β-oxidation enzymes. In contrast, PPARδ mRNA levels increased progressively during cold exposure. Transactivation assays in HIB 1B and HEK-293 cells demonstrated an adrenergic stimulation of peroxisome proliferator response element reporter activity via PPAR, establishing a role for these nuclear receptors in hormonal regulation of gene transcription in BAT.


Journal of Biological Chemistry | 2004

Molecular cloning and characterization of two mouse peroxisome proliferator-activated receptor α (PPARα)-regulated peroxisomal acyl-CoA thioesterases

Maria A. K. Westin; Stefan E. H. Alexson; Mary C. Hunt

Peroxisomes are organelles that function in the β-oxidation of long- and very long-chain acyl-CoAs, bile acid-CoA intermediates, prostaglandins, leukotrienes, thromboxanes, dicarboxylic fatty acids, pristanic acid, and xenobiotic carboxylic acids. The very long- and long-chain acyl-CoAs are mainly chain-shortened and then transported to mitochondria for further metabolism. We have now identified and characterized two peroxisomal acyl-CoA thioesterases, named PTE-Ia and PTE-Ic, that hydrolyze acyl-CoAs to the free fatty acid and coenzyme A. PTE-Ia and PTE-Ic show 82% sequence identity at the amino acid level, and a putative peroxisomal type 1 targeting signal of -AKL was identified at the carboxyl-terminal end of both proteins. Localization experiments using green fluorescent fusion protein showed PTE-Ia and PTE-Ic to be localized in peroxisomes. Despite their high level of sequence identity, we show that PTE-Ia is mainly active on long-chain acyl-CoAs, whereas PTE-Ic is mainly active on medium-chain acyl-CoAs. Lack of regulation of enzyme activity by free CoASH suggests that PTE-Ia and PTE-Ic regulate intraperoxisomal levels of acyl-CoA, and they may have a function in termination of β-oxidation of fatty acids of different chain lengths. Tissue expression studies revealed that PTE-Ia is highly expressed in kidney, whereas PTE-Ic is most highly expressed in spleen, brain, testis, and proximal and distal intestine. Both PTE-Ia and PTE-Ic were highly up-regulated in mouse liver by treatment with the peroxisome proliferator WY-14,643 and by fasting in a peroxisome proliferator-activated receptor α-dependent manner. These data show that PTE-Ia and PTE-Ic have different functions based on different substrate specificities and tissue expression.

Collaboration


Dive into the Stefan E. H. Alexson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf Diczfalusy

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curt Einarsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Maria A. K. Westin

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Ingemar Björkhem

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Gösta Eggertsen

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge