Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Freigang is active.

Publication


Featured researches published by Stefan Freigang.


Science | 2009

IL-21R on T Cells Is Critical for Sustained Functionality and Control of Chronic Viral Infection

Anja Fröhlich; Jan Kisielow; Iwana Schmitz; Stefan Freigang; Abdijapar Shamshiev; Jacqueline Weber; Benjamin J. Marsland; Annette Oxenius; Manfred Kopf

Controlling Chronic Viral Infections Chronic viral infections such as HIV and hepatitis B and C viruses are major public health concerns. T cell—mediated immune responses are critical for controlling viral infections. In contrast to acute infections, chronic viral infections are characterized by “exhausted” cytotoxic CD8+ T cells, cells which exhibit reduced proliferative capacity, cytokine secretion, and cytotoxicity. Treatments that reverse exhaustion result in increased viral control. Despite their exhaustion, these CD8+ T cells eventually help to control chronic infections by killing virally infected cells, and require CD4+ T cell help to do so. How do CD4+ T cells provide help to CD8+ T cells during chronic infection (see the Perspective by Johnson and Jameson)? Elsaesser et al. (p. 1569, published online 7 May), Yi et al. (p. 1572, published online 14 May), and Fröhlich et al. (p. 1576, published online 28 May) now show that the cytokine, interleukin-21 (IL-21), known to be critical for the differentiation of certain CD4+ T cell effector subsets, is an essential factor produced by CD4+ T cells that helps CD8+ T cells to control chronic lymphocytic choriomeningitis virus infection in mice. Acute and chronic infections resulted in differing amounts of IL-21 production by virus-specific CD4+ T cells. CD8+ T cells required IL-21 directly, and when CD8+ T cells were unable to signal through IL-21 or IL-21 was not available, they were reduced in number, exhibited a more exhausted phenotype, and were not able to control the virus. In contrast, the absence of IL-21–dependent signaling did not affect primary CD8+ T cell responses to acute infection or responses to a viral rechallenge, suggesting that differentiation of memory CD8+ T cells is independent of IL-21. Thymus cells of the immune system require the cytokine interleukin-21 to control chronic viral infections. Chronic viral infection is often associated with the dysfunction of virus-specific T cells. Our studies using Il21r-deficient (Il21r–/–) mice now suggest that interleukin-21 (IL-21) is critical for the long-term maintenance and functionality of CD8+ T cells and the control of chronic lymphocytic choriomeningitis virus infection in mice. Cell-autonomous IL-21 receptor (IL-21R)–dependent signaling by CD8+ T cells was required for sustained cell proliferation and cytokine production during chronic infection. Il21r–/– mice showed normal CD8+ T cell expansion, effector function, memory homeostasis, and recall responses during acute and after resolved infection with several other nonpersistent viruses. These data suggest that IL-21R signaling is required for the maintenance of polyfunctional T cells during chronic viral infections and have implications for understanding the immune response to other persisting antigens, such as tumors.


Nature Immunology | 2003

Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections

Lukas Hunziker; Mike Recher; Andrew J. Macpherson; Adrian Ciurea; Stefan Freigang; Hans Hengartner; Rolf M. Zinkernagel

Polyclonal hypergammaglobulinemia is a characteristic of chronic inflammatory conditions, including persisting viral infections and autoimmune diseases. Here we have studied hypergammaglobulinemia in mice infected with lymphocytic choriomeningitis virus (LCMV), which induces nonspecific immunoglobulins as a result of switching natural IgM specificities to IgG. The process is dependent on help from CD4+ T cells that specifically recognize LCMV peptides presented by B cells on major histocompatibility complex class II molecules. Thus, hypergammaglobulinemia may arise when specific helper T cells recognize B cells that have processed viral antigens irrespective of the B cell receptor specificity. This nonspecific B cell activation may contribute to antibody-mediated autoimmunity.


Nature Immunology | 2013

Fatty acid–induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis

Stefan Freigang; Franziska Ampenberger; Adrienne Weiss; Thirumala-Devi Kanneganti; Yoichiro Iwakura; Martin Hersberger; Manfred Kopf

Chronic inflammation is a fundamental aspect of metabolic disorders such as obesity, diabetes and cardiovascular disease. Cholesterol crystals are metabolic signals that trigger sterile inflammation in atherosclerosis, presumably by activating inflammasomes for IL-1β production. We found here that atherogenesis was mediated by IL-1α and we identified fatty acids as potent inducers of IL-1α-driven vascular inflammation. Fatty acids selectively stimulated the release of IL-1α but not of IL-1β by uncoupling mitochondrial respiration. Fatty acid–induced mitochondrial uncoupling abrogated IL-1β secretion, which deviated the cholesterol crystal–elicited response toward selective production of IL-1α. Our findings delineate a previously unknown pathway for vascular immunopathology that links the cellular response to metabolic stress with innate inflammation, and suggest that IL-1α, not IL-1β, should be targeted in patients with cardiovascular disease.


European Journal of Immunology | 2011

Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis.

Stefan Freigang; Franziska Ampenberger; Gunther Spohn; Sebastian Heer; Abdijapar Shamshiev; Jan Kisielow; Martin Hersberger; Masayuki Yamamoto; Martin F. Bachmann; Manfred Kopf

Oxidative stress and inflammation — two components of the natural host response to injury — constitute important etiologic factors in atherogenesis. The pro‐inflammatory cytokine interleukin (IL)‐1 significantly enhances atherosclerosis, however, the molecular mechanisms of IL‐1 induction within the artery wall remain poorly understood. Here we have identified the oxidative stress‐responsive transcription factor NF‐E2‐related 2 (Nrf2) as an essential positive regulator of inflammasome activation and IL‐1‐mediated vascular inflammation. We show that cholesterol crystals, which accumulate in atherosclerotic plaques, represent an endogenous danger signal that activates Nrf2 and the NLRP3 inflammasome. The resulting vigorous IL‐1 response critically depended on expression of Nrf2, and Nrf2‐deficient apolipoprotein E (Apoe)−/− mice were highly protected against diet‐induced atherogenesis. Importantly, therapeutic neutralization of IL‐1α and IL‐1β reduced atherosclerosis in Nrf2+/−Apoe−/− but not in Nrf2−/−Apoe−/− mice, suggesting that the pro‐atherogenic effect of Nrf2‐signaling was primarily mediated by its permissive role in IL‐1 production. Our studies demonstrate a role for Nrf2 in inflammasome activation, and identify cholesterol crystals as disease‐relevant triggers of the NLRP3 inflammasome and potent pro‐atherogenic cytokine responses. These findings suggest a common pathway through which oxidative stress and metabolic danger signals converge and mutually perpetuate the chronic vascular inflammation that drives atherosclerosis.


Journal of Virology | 2004

Expansion of Protective CD8+ T-Cell Responses Driven by Recombinant Cytomegaloviruses

Urs Karrer; Markus Wagner; Sophie Sierro; Annette Oxenius; Hartmut Hengel; Tilman Dumrese; Stefan Freigang; Ulrich H. Koszinowski; Rodney E. Phillips; Paul Klenerman

ABSTRACT CD8+ T cells are critical for the control of many persistent viral infections, such as human immunodeficiency virus, hepatitis C virus, Epstein-Barr virus, and cytomegalovirus (CMV). In most infections, large CD8+-T-cell populations are induced early but then contract and are maintained thereafter at lower levels. In contrast, CD8+ T cells specific for murine CMV (MCMV) have been shown to gradually accumulate after resolution of primary infection. This unique behavior is restricted to certain epitopes, including an immunodominant epitope derived from the immediate-early 1 (IE1) gene product. To explore the mechanism behind this further, we measured CD8+-T-cell-mediated immunity induced by recombinant MCMV-expressing epitopes derived from influenza A virus or lymphocytic choriomeningitis virus placed under the control of an IE promoter. We observed that virus-specific CD8+-T-cell populations were induced and that these expanded gradually over time. Importantly, these CD8+ T cells provided long-term protection against challenge without boosting. These results demonstrate a unique pattern of accumulating T cells, which provide long-lasting immune protection, that is independent of the initial immunodominance of the epitope and indicates the potential of T-cell-inducing vaccines based on persistent vectors.


Journal of Experimental Medicine | 2015

T cell lipid peroxidation induces ferroptosis and prevents immunity to infection

Mai Matsushita; Stefan Freigang; Christoph Schneider; Marcus Conrad; Georg W. Bornkamm; Manfred Kopf

Matsushita et al. investigated the role of the selenoenzyme glutathione peroxidae 4 (Gpx4) in T cell responses and found that loss of Gpx4 results in an intrinsic T cell developmental defect in the periphery, which leads to a failure to expand and protect from acute viral and parasitic infection.The defects were rescued with dietary supplementation of vitamin E. The Gp4−/− T cells accumulate membrane lipid peroxides and undergo cell death by ferroptosis.


Circulation Research | 2006

Maternal Immunization Programs Postnatal Immune Responses and Reduces Atherosclerosis in Offspring

Tomoya Yamashita; Stefan Freigang; Claudia Eberle; Jennifer Pattison; Sachin Gupta; Claudio Napoli; Wulf Palinski

Maternal hypercholesterolemia during pregnancy increases offspring susceptibility to atherosclerosis by an oxidation-dependent mechanism. The present studies investigated whether maternal immunization with oxidized LDL (OxLDL) before pregnancy protects the fetus from atherogenic in utero programming by maternal hypercholesterolemia. Maternal immunization of NZW rabbits and LDL receptor–deficient mice indeed reduced atherosclerosis in adult offspring by up to 56%, but the protective effect could not be attributed to a reduction of fetal exposure to hypercholesterolemia alone, and even nonspecific immune stimulation with adjuvant only provided some protection. Unexpectedly, offspring of immunized mothers developed increased IgM antibodies to selective OxLDL epitopes and increased IgM-LDL immune complexes, compared with offspring of nonimmunized controls. Even naïve offspring of OxLDL-immunized mothers never exposed to postnatal hypercholesterolemia responded to a one-time OxLDL and KLH challenge with greater OxLDL-specific IgM responses, increased OxLDL-specific IgM-secreting B cells, and more IgM-LDL immune complexes. In contrast, maternal immunization with KLH, a T cell–dependent nonmammalian antigen, did not influence postnatal immune responses. Effects of maternal OxLDL-immunization on offspring B cells and selective antibodies were independent of transplacental passage of maternal immunoglobulins. Results show that maternal immunization with antigens prevalent in atherosclerotic lesions reduces atherogenesis in their offspring by mechanisms that include, but are not limited to, reduced fetal exposure to maternal hypercholesterolemia and lipid peroxidation. More importantly, they demonstrate in principle that maternal adaptive immunity to selective antigens influences postnatal B cell and antibody responses in offspring, and that modulation of in utero immune programming may influence immune-modulated diseases later in life.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen αGalCer

Li Bai; Yuval Sagiv; Yang Liu; Stefan Freigang; Karl O. A. Yu; Luc Teyton; Steven A. Porcelli; Paul B. Savage; Albert Bendelac

Short or polyunsaturated lipid variants of the NKT cell antigen α-galactosylceramide (αGC) exhibit decreased potency and a Th2 bias in vivo despite conserved TCR contact residues and stable binding to CD1d at neutral and acidic pH. Using reagents to directly visualize lipids in their free or CD1d-bound form, we determined that, contrary to predictions, these lipids reached the lysosome better than αGC. However, in contrast with αGC, they loaded CD1d at the cell surface and underwent immediate pH-dependent dissociation upon recycling to the lysosome. In cell-free assays, ultrafast dissociation of preformed complexes could be induced at acidic pH only when free competitor lipids were added, suggesting active lipid displacement. These findings provide a common cell biological explanation for the decreased stimulatory properties of short and polyunsaturated αGC variants. They also suggest that direct lipid displacement is a potent mechanism underlying highly dynamic lipid exchange reactions in the lysosomal compartment that shape the repertoire of lipids associated with CD1d.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Endogenous neosynthesis vs. cross-presentation of viral antigens for cytotoxic T cell priming

Stefan Freigang; Denise Egger; Kurt Bienz; Hans Hengartner; Rolf M. Zinkernagel

Induction of antiviral cytotoxic T lymphocytes (CTLs) has been proposed to require cross-presentation of viral antigens derived from infected extralymphatic host cells by antigen-presenting cells (APC). This postulated mechanism of cross-priming is thought to be essential for CTL responses against viruses that do not infect professional APC, e.g., because of absence of the specific virus receptor. Here, we show for the human pathogen poliovirus that naturally nonpermissive murine APC acquire viral RNA in vivo independently of the cellular virus receptor. Uptake of poliovirus or polioviral RNA initiated neosynthesis of viral antigen to an extent sufficient to prime CTLs in vivo, which were detectable 2-3 wk after infection. Our results do not only indicate that experiments studying cross-presentation and cross-priming by using potentially amplifiable or translatable materials need careful examination, but they also question the general biological importance of cross-presentation and cross-priming in antiviral CTL responses.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions

Nicolas Genoud; Axel Behrens; Gino Miele; Dimitri Robay; Frank L. Heppner; Stefan Freigang; Adriano Aguzzi

The Prnp gene encodes the cellular prion protein PrPC. Removal of its ORF does not result in pathological phenotypes, but deletions extending into the upstream intron result in cerebellar degeneration, possibly because of ectopic cis-activation of the Prnd locus that encodes the PrPC homologue Doppel (Dpl). To test this hypothesis, we removed Prnd from Prnpo/o mice by transallelic meiotic recombination. Balanced loxP-mediated ablation yielded mice lacking both PrPC and Dpl (Prno/o), which developed normally and showed unimpaired immune functions but suffered from male infertility. However, removal of the Prnd locus abolished cerebellar degeneration, proving that this phenotype is caused by Dpl upregulation. The absence of compound pathological phenotypes in Prno/o mice suggests the existence of alternative compensatory mechanisms. Alternatively, Dpl and PrPC may exert distinct functions despite having partly overlapping expression profiles.

Collaboration


Dive into the Stefan Freigang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Teyton

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Liu

Brigham Young University

View shared research outputs
Researchain Logo
Decentralizing Knowledge