Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Štefan Fujs is active.

Publication


Featured researches published by Štefan Fujs.


Journal of Biological Chemistry | 2010

Origin of the Allyl Group in FK506 Biosynthesis

Dušan Goranovič; Gregor Kosec; Peter Mrak; Štefan Fujs; Jaka Horvat; Enej Kuščer; Gregor Kopitar; Hrvoje Petković

FK506 (tacrolimus) is a secondary metabolite with a potent immunosuppressive activity, currently registered for use as immunosuppressant after organ transplantation. FK506 and FK520 are biogenetically related natural products that are synthesized by combined polyketide synthase/nonribosomal peptide synthetase systems. The entire gene cluster for biosynthesis of FK520 from Streptomyces hygroscopicus var. ascomyceticus has been cloned and sequenced. On the other hand, the FK506 gene cluster from Streptomyces sp. MA6548 (ATCC55098) was sequenced only partially, and it was reasonable to expect that additional genes would be required for the provision of substrate supply. Here we report the identification of a previously unknown region of the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 containing genes encoding the provision of unusual building blocks for FK506 biosynthesis as well as a regulatory gene. Among others, we identified a group of genes encoding biosynthesis of the extender unit that forms the allyl group at carbon 21 of FK506. Interestingly, we have identified a small independent diketide synthase system involved in the biosynthesis of the allyl group. Inactivation of one of these genes, encoding an unusual ketosynthase domain, resulted in an FK506 nonproducing strain, and the production was restored when a synthetic analog of the allylmalonyl-CoA extender unit was added to the cultivation medium. Based on our results, we propose a biosynthetic pathway for the provision of an unusual five-carbon extender unit, which is carried out by a novel diketide synthase complex.


BMC Microbiology | 2012

FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis

Dušan Goranovič; Marko Blažič; Vasilka Magdevska; Jaka Horvat; Enej Kuščer; Tomaž Polak; Javier Santos-Aberturas; Miriam Martínez-Castro; Carlos Barreiro; Peter Mrak; Gregor Kopitar; Gregor Kosec; Štefan Fujs; Juan F. Martín; Hrvoje Petković

BackgroundFK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses.ResultsThree putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type) and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively.ConclusionsOur results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of S. tsukubaensis for improving the yield of fermentative processes for production of FK506.


Genome Announcements | 2013

Draft Genome Sequence of Streptomyces rapamycinicus Strain NRRL 5491, the Producer of the Immunosuppressant Rapamycin

Damir Baranasic; Ranko Gacesa; Antonio Starcevic; Jurica Zucko; Marko Blažič; Marinka Horvat; Krešimir Gjuračić; Štefan Fujs; Daslav Hranueli; Gregor Kosec; John Cullum; Hrvoje Petković

ABSTRACT Streptomyces rapamycinicus strain NRRL 5491 produces the important drug rapamycin. It has a large genome of 12.7 Mb, of which over 3 Mb consists of 48 secondary metabolite biosynthesis clusters.


Metabolic Engineering | 2012

Novel chemobiosynthetic approach for exclusive production of FK506

Gregor Kosec; Dušan Goranovič; Peter Mrak; Štefan Fujs; Enej Kuščer; Jaka Horvat; Gregor Kopitar; Hrvoje Petković

FK506, a widely used immunosuppressant, is produced by industrial fermentation processes using various Streptomyces species. Independently of the strain, structurally related compound FK520 is co-produced, resulting in complex and costly isolation procedures. In this paper, we report a chemobiosynthetic approach for exclusive biosynthesis of FK506. This approach is based on the Streptomyces tsukubaensis strain with inactivated allR gene, a homologue of crotonyl-CoA carboxylase/reductase, encoded in the FK506 biosynthetic cluster. This strain produces neither FK506 nor FK520; however, if allylmalonyl-S-N-acetylcysteamine precursor is added to cultivation broth, the production of FK506 is reestablished without FK506-related by-products. Using a combination of metabolic engineering and chemobiosynthetic approach, we achieved exclusive production of FK506, representing a significant step towards development of an advanced industrial bioprocess.


Applied Microbiology and Biotechnology | 2003

The involvement of ATP sulfurylase in Se(VI) and Cr(VI) reduction processes in the fission yeast Schizosaccharomyces pombe.

Peter Raspor; Štefan Fujs; L. Banszky; A. Maraz; Martin Batič

The response of Schizosaccharomyces pombe towards the oxyanions selenate [Se(VI)] and dichromate [Cr(VI)] was investigated in order to establish the involvement of the yeast ATP sulfurylase in their reduction. An ATP sulfurylase-defective/selenate-resistant mutant of S. pombe (B-579 SeR-2) and an ATP sulfurylase-active/selenate-sensitive strain of S. pombe (B-579 SeS) were included in this study. The inhibitory effect of Se(VI) and Cr(VI) oxyanions on growth and bioaccumulation was measured. The sensitive strain showed natural sensitivity to selenate while the resistant mutant tolerated a 100-fold higher concentration of selenate. These results indicate that selenate toxicity to microorganisms is connected with the reduction of selenate to selenite. Both strains showed similar sensitivity to Cr(VI) and in this study there was no evidence that ATP sulfurylase participates in the reduction process of Cr(VI).


Angewandte Chemie | 2015

Construction of a New Class of Tetracycline Lead Structures with Potent Antibacterial Activity through Biosynthetic Engineering

Urška Lešnik; Tadeja Lukežič; Ajda Podgoršek; Jaka Horvat; Tomaž Polak; Martin Šala; Branko Jenko; Kirsten Harmrolfs; Alain A. Ocampo-Sosa; Luis Martínez-Martínez; Paul Herron; Štefan Fujs; Gregor Kosec; Iain S. Hunter; Rolf Müller; Hrvoje Petković

Antimicrobial resistance and the shortage of novel antibiotics have led to an urgent need for new antibacterial drug leads. Several existing natural product scaffolds (including chelocardins) have not been developed because their suboptimal pharmacological properties could not be addressed at the time. It is demonstrated here that reviving such compounds through the application of biosynthetic engineering can deliver novel drug candidates. Through a rational approach, the carboxamido moiety of tetracyclines (an important structural feature for their bioactivity) was introduced into the chelocardins, which are atypical tetracyclines with an unknown mode of action. A broad-spectrum antibiotic lead was generated with significantly improved activity, including against all Gram-negative pathogens of the ESKAPE panel. Since the lead structure is also amenable to further chemical modification, it is a platform for further development through medicinal chemistry and genetic engineering.


Applied and Environmental Microbiology | 2012

Annotation of the Modular Polyketide Synthase and Nonribosomal Peptide Synthetase Gene Clusters in the Genome of Streptomyces tsukubaensis NRRL18488

Marko Blažič; Antonio Starcevic; Mohamed Lisfi; Damir Baranasic; Dušan Goranovič; Štefan Fujs; Enej Kuščer; Gregor Kosec; Hrvoje Petković; John Cullum; Daslav Hranueli; Jurica Zucko

ABSTRACT The high G+C content and large genome size make the sequencing and assembly of Streptomyces genomes more difficult than for other bacteria. Many pharmaceutically important natural products are synthesized by modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The analysis of such gene clusters is difficult if the genome sequence is not of the highest quality, because clusters can be distributed over several contigs, and sequencing errors can introduce apparent frameshifts into the large PKS and NRPS proteins. An additional problem is that the modular nature of the clusters results in the presence of imperfect repeats, which may cause assembly errors. The genome sequence of Streptomyces tsukubaensis NRRL18488 was scanned for potential PKS and NRPS modular clusters. A phylogenetic approach was used to identify multiple contigs belonging to the same cluster. Four PKS clusters and six NRPS clusters were identified. Contigs containing cluster sequences were analyzed in detail by using the ClustScan program, which suggested the order and orientation of the contigs. The sequencing of the appropriate PCR products confirmed the ordering and allowed the correction of apparent frameshifts resulting from sequencing errors. The product chemistry of such correctly assembled clusters could also be predicted. The analysis of one PKS cluster showed that it should produce a bafilomycin-like compound, and reverse transcription (RT)-PCR was used to show that the cluster was transcribed.


Folia Microbiologica | 2011

The abc1−/coq8− respiratory-deficient mutant of Schizosaccharomyces pombe suffers from glutathione underproduction and hyperaccumulates Cd2+

Zoltán Gazdag; Štefan Fujs; Balázs Kőszegi; Nikoletta Kálmán; Gábor Papp; Tamás Emri; Joseph Belagyi; István Pócsi; Peter Raspor; Miklós Pesti

The abc1−/coq8− gene deletion respiratory-deficient mutant NBp17 of fission yeast Schizosaccharomyces pombe displayed a phenotypic fermentation pattern with enhanced production of glycerol and acetate, and also possessed oxidative stress-sensitive phenotypes to H2O2, menadione, tBuOOH, Cd2+, and chromate in comparison with its parental respiratory-competent strain HNT. As a consequence of internal stress-inducing mutation, adaptation processes to restore the redox homeostasis of mutant NBp17 cells were detected in minimal glucose medium. Mutant NBp17 produced significantly increased amounts of O2•− and H2O2 as a result of the decreased internal glutathione concentration and the only slightly increased glutathione reductase activity. The Cr(VI) reduction capacity and hence the •OH production ability were decreased. The mutant cells demonstrated increased specific activities of superoxide dismutases and glutathione reductase (but not catalase) to detoxify at least partially the overproduction of reactive oxygen species. All these features may be explained by the decreased redox capacity of the mutant cells. Most notably, mutant NBp17 hyperaccumulated yellow CdS.


Microbial Cell Factories | 2013

SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea

Benjamin Kirm; Vasilka Magdevska; Miha Tome; Marinka Horvat; Katarina Karničar; Marko Petek; Robert Vidmar; Špela Baebler; Polona Jamnik; Štefan Fujs; Jaka Horvat; Marko Fonović; Boris Turk; Kristina Gruden; Hrvoje Petković; Gregor Kosec

BackgroundErythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement.ResultsWe used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis.ConclusionsSACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bldD, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions.


Beneficial Microbes | 2015

Acid resistance and response to pH-induced stress in two Lactobacillus plantarum strains with probiotic potential.

Helena Šeme; Blaženka Kos; Štefan Fujs; M. Štempelj; Hrvoje Petković; Jagoda Šušković; B. Bogovič Matijašić; Gregor Kosec

Two new Lactobacillus plantarum strains, KR6-DSM 28780 and M5 isolated from sour turnip and traditional dried fresh cheese, respectively, were evaluated for species identity, antibiotic susceptibility, resistance to gastrointestinal conditions and adaptive response to low pH. Resistance mechanisms involved in the adaptation to acid-induced stress in these two strains were investigated by quantitative PCR of the atpA, cfa1, mleS and hisD genes. In addition to absence of antibiotic resistance, the two L. plantarum strains showed excellent survival rates at pH values as low as 2.4. Adaptive response to low pH was clearly observed in both strains; strain KR6 was superior to M5, as demonstrated by its ability to survive during 3 h incubation at pH 2.0 upon adaptation to moderately acidic conditions. In contrast, acid adaptation did not significantly affect the survival rate during simulated passage through the gastrointestinal tract. In both strains, induction of histidine biosynthesis (hisD) was upregulated during the acid adaptation response. In addition, significant upregulation of the cfa1 gene, involved in modulation of membrane fatty acid composition, was observed during the adaptation phase in strain KR6 but not in strain M5. Cells adapted to moderately acidic conditions also showed a significantly increased viability after the lyophilisation procedure, a cross-protection phenomenon providing additional advantage in probiotic application.

Collaboration


Dive into the Štefan Fujs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Raspor

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Turk

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge