Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Gsell is active.

Publication


Featured researches published by Stefan Gsell.


New Journal of Physics | 2011

Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium

Elke Neu; David Steinmetz; Janine Riedrich-Möller; Stefan Gsell; Martin Fischer; M. Schreck; Christoph Becher

We introduce a process for the fabrication of high quality, spatially isolated nano-diamonds on iridium via microwave plasma assisted CVD-growth. We perform spectroscopy of single silicon-vacancy (SiV)-centres produced during the growth of the nano-diamonds. The colour centres exhibit extraordinary narrow zero-phonon-lines down to 0.7 nm at room temperature. Single photon count rates up to 4.8 Mcps at saturation make these SiV-centres the brightest diamond based single photon sources to date. We measure for the first time the fine structure of a single SiV-centre thus confirming the atomic composition of the investigated colour centres.


Nature Nanotechnology | 2012

One- and two-dimensional photonic crystal microcavities in single crystal diamond

Janine Riedrich-Möller; Laura Kipfstuhl; Christian Hepp; Elke Neu; Christoph Pauly; Frank Mücklich; Armin Baur; Michael Wandt; Sandra Wolff; Martin Fischer; Stefan Gsell; M. Schreck; Christoph Becher

Diamond is an attractive material for photonic quantum technologies because its colour centres have a number of outstanding properties, including bright single photon emission and long spin coherence times. To take advantage of these properties it is favourable to directly fabricate optical microcavities in high-quality diamond samples. Such microcavities could be used to control the photons emitted by the colour centres or to couple widely separated spins. Here, we present a method for the fabrication of one- and two-dimensional photonic crystal microcavities with quality factors of up to 700 in single crystal diamond. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy colour centres, and we measure an intensity enhancement factor of 2.8. The controlled coupling of colour centres to photonic crystal microcavities could pave the way to larger-scale photonic quantum devices based on single crystal diamond.


Angewandte Chemie | 2010

Supramolecular Assemblies Formed on an Epitaxial Graphene Superstructure

Andrew J. Pollard; Edward Perkins; Nicholas A. Smith; Alex Saywell; Gudrun Goretzki; Anna G. Phillips; Stephen P. Argent; Hermann Sachdev; Frank Müller; S. Hüfner; Stefan Gsell; Martin Fischer; M. Schreck; Jürg Osterwalder; Thomas Greber; Simon Berner; Neil R. Champness; Peter H. Beton

The seminal work of Novoselov et al. has stimulated great interest in the controllable growth of epitaxial graphene monolayers. While initial research was focussed on the use of SiC wafers, the promise of transition metals as substrates has also been demonstrated and both approaches are scalable to large-area production. 12] The growth of graphene on transition metals such as Ru, Rh and Ir leads to a moir!-like superstructure, 10,12,13] similar to that observed for BN monolayers. Here we show that such a superstructure can be used to control the organization of extended supramolecular nanostructures. The formation of two-dimensional supramolecular arrays has received increasing attention over recent years primarily due to potential applications in nanostructure fabrication as well as fundamental interest in self-assembly processes. Such studies can be highly dependent on the nature of the substrate used, and the interplay between surface and adsorbed supramolecular structure is a topic of significant conjecture. Until now metallic surfaces or highly oriented pyrolytic graphite (HOPG) have typically been the surfaces of choice for such studies. Our results demonstrate that graphene is compatible with, and can strongly influence molecular selfassembly. We have studied the adsorption of perylene tetracarboxylic diimide (PTCDI) and related derivatives on a graphene monolayer grown on a Rh(111) heteroepitaxial thin film (Figure 1). In particular, we show that a near-commensur-


Nature Communications | 2014

Optical signatures of silicon-vacancy spins in diamond

Tina Muller; Christian Hepp; Benjamin Pingault; Elke Neu; Stefan Gsell; M. Schreck; Hadwig Sternschulte; Doris Steinmüller-Nethl; Christoph Becher; Mete Atatüre

Colour centres in diamond have emerged as versatile tools for solid-state quantum technologies ranging from quantum information to metrology, where the nitrogen-vacancy centre is the most studied to date. Recently, this toolbox has expanded to include novel colour centres to realize more efficient spin-photon quantum interfaces. Of these, the silicon-vacancy centre stands out with highly desirable photonic properties. The challenge for utilizing this centre is to realize the hitherto elusive optical access to its electronic spin. Here we report spin-tagged resonance fluorescence from the negatively charged silicon-vacancy centre. Our measurements reveal a spin-state purity approaching unity in the excited state, highlighting the potential of the centre as an efficient spin-photon quantum interface.


Applied Physics Letters | 2004

A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers

Stefan Gsell; T. Bauer; J. Goldfuß; M. Schreck; B. Stritzker

A multilayer structure is presented which allows the deposition of high-quality heteroepitaxial diamond films on silicon. After pulsed-laser deposition of a thin yttria-stabilized zirconia (YSZ) layer on silicon, iridium was deposited by e-beam evaporation. Subsequently, diamond nucleation and growth was performed in a chemical vapor deposition setup. The epitaxial orientation relationship measured by x-ray diffraction is diamond(001)[110]∥Ir(001)[110]∥YSZ(001) [110]∥Si(001)[110]. The mosaicity of the diamond films is about an order of magnitude lower than for deposition directly on silicon without buffer layers and nearly reaches the values reported for single-crystal diamond on Ir/SrTiO3. In the effort towards single-crystal diamond wafers, the present solution offers advantages over alternative growth substrates like large-area oxide single crystals due to the low thermal expansion mismatch.


Nano Letters | 2014

Deterministic Coupling of a Single Silicon-Vacancy Color Center to a Photonic Crystal Cavity in Diamond

Janine Riedrich-Möller; Carsten Arend; Christoph Pauly; Frank Mücklich; Martin C. Fischer; Stefan Gsell; M. Schreck; Christoph Becher

Deterministic coupling of single solid-state emitters to nanocavities is the key for integrated quantum information devices. We here fabricate a photonic crystal cavity around a preselected single silicon-vacancy color center in diamond and demonstrate modification of the emitters internal population dynamics and radiative quantum efficiency. The controlled, room-temperature cavity coupling gives rise to a resonant Purcell enhancement of the zero-phonon transition by a factor of 19, coming along with a 2.5-fold reduction of the emitters lifetime.


New Journal of Physics | 2013

Low-temperature investigations of single silicon vacancy colour centres in diamond

Elke Neu; Christian Hepp; Michael Hauschild; Stefan Gsell; Martin Fischer; Hadwig Sternschulte; Doris Steinmüller-Nethl; M. Schreck; Christoph Becher

We study single silicon vacancy (SiV) centres in chemical vapour deposition (CVD) nanodiamonds on iridium as well as an ensemble of SiV centres in a high-quality, low-stress CVD diamond film by using temperature-dependent luminescence spectroscopy in the temperature range 5?295?K. We investigate in detail the temperature-dependent fine structure of the zero-phonon line (ZPL) of the SiV centres. The ZPL transition is affected by inhomogeneous as well as temperature-dependent homogeneous broadening and blue shifts by about 20?cm?1 upon cooling from room temperature to 5?K. We employ excitation power-dependent g(2) measurements to explore the temperature-dependent internal population dynamics of single SiV centres and infer mostly temperature-independent dynamics.


Small | 2009

How Does Graphene Grow? Easy Access to Well‐Ordered Graphene Films

Frank Müller; Hermann Sachdev; S. Hüfner; Andrew J. Pollard; Edward Perkins; James C. Russell; Peter H. Beton; Stefan Gsell; Martin Fischer; M. Schreck; B. Stritzker

The selective formation of large-scale graphene layers on a Rh-YSZ-Si(111) multilayer substrate by a surface-induced chemical growth mechanism is investigated using low-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray photoelectron diffraction, and scanning tunneling microscopy. It is shown that well-ordered graphene layers can be grown using simple and controllable procedures. In addition, temperature-dependent experiments provide insight into the details of the growth mechanisms. A comparison of different precursors shows that a mobile dicarbon species (e.g., C(2)H(2) or C(2)) acts as a common intermediate for graphene formation. These new approaches offer scalable methods for the large-scale production of high-quality graphene layers on silicon-based multilayer substrates.


Applied Physics Letters | 2007

Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon

Stefan Gsell; Martin Fischer; Rosaria Brescia; M. Schreck; P. Huber; F. Bayer; B. Stritzker; Darrell G. Schlom

Using epitaxial SrTiO3 and yttria-stabilized zirconia (YSZ) buffer layers deposited on silicon as a starting point, epitaxial iridium layers were grown by electron-beam evaporation using a two-step growth process with an extremely low initial deposition rate. The iridium layers had in-plane (twist) and out-of-plane (tilt) full widths at half maximum as narrow as 0.08° and 0.15°, respectively, up to an order of magnitude narrower than the underlying SrTiO3 and YSZ layers. SrTiO3 and ZnO films grown on the iridium showed significantly narrower twist and tilt values than without the iridium interlayer, demonstrating a route to improved oxide heteroepitaxy on silicon.


Journal of Physics: Condensed Matter | 2012

Epitaxial growth of graphene on transition metal surfaces: chemical vapor deposition versus liquid phase deposition

Samuel Grandthyll; Stefan Gsell; Michael Weinl; M. Schreck; S. Hüfner; Frank Müller

The epitaxial growth of graphene on transition metal surfaces by ex situ deposition of liquid precursors (LPD, liquid phase deposition) is compared to the standard method of chemical vapor deposition (CVD). The performance of LPD strongly depends on the particular transition metal surface. For Pt(111), Ir(111) and Rh(111), the formation of a graphene monolayer is hardly affected by the way the precursor is provided. In the case of Ni(111), the growth of graphene strongly depends on the applied synthesis method. For CVD of propene on Ni(111), a 1 × 1 structure as expected from the vanishing lattice mismatch is observed. However, in spite of the nearly perfect lattice match, a multi-domain structure with 1 × 1 and two additional rotated domains is obtained when an oxygen-containing precursor (acetone) is provided ex situ.

Collaboration


Dive into the Stefan Gsell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosaria Brescia

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge