Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan H. I. Kappe is active.

Publication


Featured researches published by Stefan H. I. Kappe.


Journal of Biological Chemistry | 2002

Infectivity-associated Changes in the Transcriptional Repertoire of the Malaria Parasite Sporozoite Stage

Kai Matuschewski; Jessica Ross; Stuart M. Brown; Karine Kaiser; Victor Nussenzweig; Stefan H. I. Kappe

Injection of Plasmodium salivary gland sporozoites into the vertebrate host byAnopheles mosquitoes initiates malaria infection. Sporozoites develop within oocysts in the mosquito midgut and then enter and mature in the salivary glands. Although morphologically similar, oocyst sporozoites and salivary gland sporozoites differ strikingly in their infectivity to the mammalian host, ability to elicit protective immune responses, and cell motility. Here, we show that differential gene expression coincides with these dramatic phenotypic differences. Using suppression subtractive cDNA hybridization we identified highly up-regulated mRNAs transcribed from 30 distinct genes in salivary gland sporozoites. Of those genes, 29 are not significantly expressed in the parasites blood stages. The most frequently recovered transcript encodes a protein kinase. Developmental up-regulation of specific mRNAs in the infectious transmission stage of Plasmodiumindicates that their translation products may have unique roles in hepatocyte infection and/or development of liver stages.


Journal of Cell Science | 2003

Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites.

Lawrence W. Bergman; Karine Kaiser; Hisashi Fujioka; Isabelle Coppens; Thomas M. Daly; Sarah Fox; Kai Matuschewski; Victor Nussenzweig; Stefan H. I. Kappe

Apicomplexan host cell invasion and gliding motility depend on the parasites actomyosin system located beneath the plasma membrane of invasive stages. Myosin A (MyoA), a class XIV unconventional myosin, is the motor protein. A model has been proposed to explain how the actomyosin motor operates but little is known about the components, topology and connectivity of the motor complex. Using the MyoA neck and tail domain as bait in a yeast two-hybrid screen we identified MTIP, a novel 24 kDa protein that interacts with MyoA. Deletion analysis shows that the 15 amino-acid C-terminal tail domain of MyoA, rather than the neck domain, specifically interacts with MTIP. In Plasmodium sporozoites MTIP localizes to the inner membrane complex (IMC), where it is found clustered with MyoA. The data support a model for apicomplexan motility and invasion in which the MyoA motor protein is associated via its tail domain with MTIP, immobilizing it at the outer IMC membrane. The head domain of the immobilized MyoA moves actin filaments that, directly or via a bridging protein, connect to the cytoplasmic domain of a transmembrane protein of the TRAP family. The actin/TRAP complex is then redistributed by the stationary MyoA from the anterior to the posterior end of the zoite, leading to its forward movement on a substrate or to penetration of a host cell.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Exploring the transcriptome of the malaria sporozoite stage

Stefan H. I. Kappe; Malcolm J. Gardner; Stuart M. Brown; Jessica Ross; Kai Matuschewski; José M. C. Ribeiro; John H. Adams; John Quackenbush; Jennifer Cho; Daniel J. Carucci; Stephen L. Hoffman; Victor Nussenzweig

Most studies of gene expression in Plasmodium have been concerned with asexual and/or sexual erythrocytic stages. Identification and cloning of genes expressed in the preerythrocytic stages lag far behind. We have constructed a high quality cDNA library of the Plasmodium sporozoite stage by using the rodent malaria parasite P. yoelii, an important model for malaria vaccine development. The technical obstacles associated with limited amounts of RNA material were overcome by PCR-amplifying the transcriptome before cloning. Contamination with mosquito RNA was negligible. Generation of 1,972 expressed sequence tags (EST) resulted in a total of 1,547 unique sequences, allowing insight into sporozoite gene expression. The circumsporozoite protein (CS) and the sporozoite surface protein 2 (SSP2) are well represented in the data set. A blastx search with all tags of the nonredundant protein database gave only 161 unique significant matches (P(N) ≤ 10−4), whereas 1,386 of the unique sequences represented novel sporozoite-expressed genes. We identified ESTs for three proteins that may be involved in host cell invasion and documented their expression in sporozoites. These data should facilitate our understanding of the preerythrocytic Plasmodium life cycle stages and the development of preerythrocytic vaccines.


Molecular Microbiology | 2004

Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins

Karine Kaiser; Kai Matuschewski; Nelly Camargo; Jessica Ross; Stefan H. I. Kappe

Invasive sporozoite and merozoite stages of malaria parasites that infect mammals enter and subsequently reside in hepatocytes and red blood cells respectively. Each invasive stage may exhibit unique adaptations that allow it to interact with and survive in its distinct host cell environment, and these adaptations are likely to be controlled by differential gene expression. We used suppression subtractive hybridization (SSH) of Plasmodium yoelii salivary gland sporozoites versus merozoites to identify stage‐specific pre‐erythrocytic transcripts. Sequencing of the SSH library and matching the cDNA sequences to the P. yoelii genome yielded 25 redundantly tagged genes including the only two previously characterized sporozoite‐specific genes encoding the circumsporozoite protein (CSP) and thrombospondin‐related anonymous protein (TRAP). Twelve novel genes encode predicted proteins with signal peptides, indicating that they enter the secretory pathway of the sporozoite. We show that one novel protein bearing a thrombospondin type 1 repeat (TSR) exhibits an expression pattern that suggests localization in the sporozoite secretory rhoptry organelles. In addition, we identified a group of four genes encoding putative low‐molecular‐mass proteins. Two proteins in this group exhibit an expression pattern similar to TRAP, and thus possibly localize in the sporozoite secretory micronemes. Proteins encoded by the differentially expressed genes identified here probably mediate specific interactions of the sporozoite with the mosquito vector salivary glands or the mammalian host hepatocyte and are not used during merozoite–red blood cell interactions.


Nature Medicine | 2016

Protection against malaria at 1 year and immune correlates following PfSPZ vaccination

Andrew S. Ishizuka; Kirsten E. Lyke; Adam DeZure; Andrea A. Berry; Thomas L. Richie; Floreliz Mendoza; Mary E. Enama; Ingelise J. Gordon; Lee-Jah Chang; Uzma N Sarwar; Kathryn L. Zephir; LaSonji A. Holman; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Sumana Chakravarty; Anita Manoj; Minglin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; Natasha K C; Tooba Murshedkar; Hope DeCederfelt; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Jamie G. Saunders

An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 105 PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21–25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.


Molecular and Biochemical Parasitology | 2001

Erythrocyte-binding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells.

Tresa S. Fraser; Stefan H. I. Kappe; David L. Narum; Kelley M. VanBuskirk; John H. Adams

Malaria merozoite surface and apical organellar molecules facilitate invasion into the host erythrocyte. The underlying molecular mechanisms of invasion are poorly understood, and there are few data to delineate roles for individual merozoite proteins. Apical membrane antigen-1 (AMA-1) is a conserved apicomplexan protein present in the apical organelle complex and at times on the surface of Plasmodium and Toxoplasma zoites. AMA-1 domains 1/2 are conserved between Plasmodium and Toxoplasma and have similarity to the defined ligand domains of MAEBL, an erythrocyte-binding protein identified from Plasmodium yoelii. We expressed selected portions of the AMA-1 extracellular domain on the surface of COS-7 cells to assay for erythrocyte-binding activity. The P. yoelii AMA-1 domains 1/2 mediated adhesion to mouse and rat erythrocytes, but not to human erythrocytes. Adhesion to rodent erythrocytes was sensitive to trypsin and chymotrypsin, but not to neuraminidase. Other parts of the AMA-1 ectodomain, including the full-length extracellular domain, mediated significantly less erythrocyte adhesion activity than the contiguous domains 1/2. The results support the role of AMA-1 as an adhesion molecule during merozoite invasion of erythrocytes and identify highly conserved domains 1/2 as the principal ligand of the Plasmodium AMA-1 and possibly the Toxoplasma AMA-1. Identification of the AMA-1 ligand domains involved in interaction between the parasite and host cell should help target the development of new therapies to block growth of the blood-stage malaria parasites.


PLOS Pathogens | 2016

Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics

Kristian E. Swearingen; Scott E. Lindner; Lirong Shi; Melanie J. Shears; Anke Harupa; Christine S. Hopp; Ashley M. Vaughan; Timothy A. Springer; Robert L. Moritz; Stefan H. I. Kappe; Photini Sinnis

Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens.


Cell Reports | 2016

Blood Stage Malaria Disrupts Humoral Immunity to the Pre-erythrocytic Stage Circumsporozoite Protein

Gladys J. Keitany; Karen S. Kim; Akshay T. Krishnamurty; Brian D. Hondowicz; William O. Hahn; Nicholas Dambrauskas; D. Noah Sather; Ashley M. Vaughan; Stefan H. I. Kappe; Marion Pepper

Many current malaria vaccines target the pre-erythrocytic stage of infection in the liver. However, in malaria-endemic regions, increased blood stage exposure is associated with decreased vaccine efficacy, thereby challenging current vaccine efforts. We hypothesized that pre-erythrocytic humoral immunity is directly disrupted by blood stage infection. To investigate this possibility, we used Plasmodium-antigen tetramers to analyze B cells after infection with either late liver stage arresting parasites or wild-type parasites that progress to the blood stage. Our data demonstrate that immunoglobulin G (IgG) antibodies against the pre-erythrocytic antigen, circumsporozoite protein (CSP), are generated only in response to the attenuated, but not the wild-type, infection. Further analyses revealed that blood stage malaria inhibits CSP-specific germinal center B cell differentiation and modulates chemokine expression. This results in aberrant memory formation and the loss of a rapid secondary B cell response. These data highlight how immunization with attenuated parasites may drive optimal immunity to malaria.


Journal of Immunological Methods | 2017

A method for the isolation and characterization of functional murine monoclonal antibodies by single B cell cloning

Sara Carbonetti; Brian Oliver; Vladimir Vigdorovich; Nicholas Dambrauskas; Brandon K. Sack; Emilee Bergl; Stefan H. I. Kappe; D. Noah Sather

Monoclonal antibody technologies have enabled dramatic advances in immunology, the study of infectious disease, and modern medicine over the past 40years. However, many monoclonal antibody discovery procedures are labor- and time-intensive, low efficiency, and expensive. Here we describe an optimized mAb discovery platform for the rapid and efficient isolation, cloning and characterization of monoclonal antibodies in murine systems. In this platform, antigen-binding splenic B cells from immunized mice are isolated by FACS and cocultured with CD40L positive cells to induce proliferation and mAb production. After 12days of coculture, cell culture supernatants are screened for antigen, and IgG positivity and RNA is isolated for reverse-transcription. Positive-well cDNA is then amplified by PCR and the resulting amplicons can be cloned into ligation-independent expression vectors, which are then used directly to transfect HEK293 cells for recombinant antibody production. After 4days of growth, conditioned medium can be screened using biolayer interferometry for antigen binding and affinity measurements. Using this method, we were able to isolate six unique, functional monoclonal antibodies against an antigen of the human malaria parasite Plasmodium falciparum. Importantly, this method incorporates several important advances that circumvent the need for single-cell PCR, restriction cloning, and large scale protein production, and can be applied to a wide array of protein antigens.


Malaria Journal | 2017

Multiplex, DNase-free one-step reverse transcription PCR for Plasmodium 18S rRNA and spliced gametocyte-specific mRNAs

Amelia E. Hanron; Zachary P. Billman; Annette M. Seilie; Tayla M. Olsen; Matthew Fishbaugher; Ming Chang; Thomas Rueckle; Nicole Andenmatten; Bryan Greenhouse; Emmanuel Arinaitwe; John Rek; Smita Das; Gonzalo J. Domingo; Kelly Shipman; Stefan H. I. Kappe; James G. Kublin; Sean C. Murphy

BackgroundPlasmodium gametocytes are sexual stages transmitted to female Anopheles mosquitoes. While Plasmodium parasites can be differentiated microscopically on Giemsa-stained blood smears, molecular methods are increasingly used because of their increased sensitivity. Molecular detection of gametocytes requires methods that discriminate between asexual and sexual stage parasites. Commonly tested gametocyte-specific mRNAs are pfs25 and pfs230 detected by reverse transcription polymerase chain reaction (RT-PCR). However, detection of these unspliced mRNA targets requires preceding DNase treatment of nucleic acids to eliminate co-purified genomic DNA. If gametocyte-specific, spliced mRNAs could be identified, DNase treatment could be eliminated and one-step multiplexed molecular methods utilized.ResultsExpression data was used to identify highly-expressed mRNAs in mature gametocytes that were also low in antisense RNA expression in non-gametocyte stages. After testing numerous candidate mRNAs, the spliced female Pf3D7_0630000 mRNA was selected as a Plasmodium falciparum gametocyte-specific biomarker compatible with Plasmodium 18S rRNA RT-PCR. This mRNA was only detected in samples containing mature gametocytes and was absent in those containing only asexual stage parasites or uninfected human blood. PF3D7_0630000 RT-PCR detected gametocytes across a wide range of parasite densities in both spiked and clinical samples and agreed with pfs25 RT-PCR, the gold standard for RT-PCR-based gametocyte detection. PF3D7_0630000 multiplexed with Plasmodium 18S rRNA RT-PCR was more sensitive than other spliced mRNA targets for one-step RT-PCR gametocyte detection.ConclusionsBecause the spliced target does not require DNase treatment, the PF3D7_0630000 assay can be multiplexed with Plasmodium 18S rRNA for direct one-step detection of gametocytes from whole human blood.

Collaboration


Dive into the Stefan H. I. Kappe's collaboration.

Top Co-Authors

Avatar

John H. Adams

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Chang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean C. Murphy

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge