Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Haufe is active.

Publication


Featured researches published by Stefan Haufe.


NeuroImage | 2011

Single-Trial Analysis and Classification of ERP Components - a Tutorial

Benjamin Blankertz; Steven Lemm; Matthias Sebastian Treder; Stefan Haufe; Klaus-Robert Müller

Analyzing brain states that correspond to event related potentials (ERPs) on a single trial basis is a hard problem due to the high trial-to-trial variability and the unfavorable ratio between signal (ERP) and noise (artifacts and neural background activity). In this tutorial, we provide a comprehensive framework for decoding ERPs, elaborating on linear concepts, namely spatio-temporal patterns and filters as well as linear ERP classification. However, the bottleneck of these techniques is that they require an accurate covariance matrix estimation in high dimensional sensor spaces which is a highly intricate problem. As a remedy, we propose to use shrinkage estimators and show that appropriate regularization of linear discriminant analysis (LDA) by shrinkage yields excellent results for single-trial ERP classification that are far superior to classical LDA classification. Furthermore, we give practical hints on the interpretation of what classifiers learned from the data and demonstrate in particular that the trade-off between goodness-of-fit and model complexity in regularized LDA relates to a morphing between a difference pattern of ERPs and a spatial filter which cancels non task-related brain activity.


NeuroImage | 2014

On the interpretation of weight vectors of linear models in multivariate neuroimaging.

Stefan Haufe; Frank C. Meinecke; Kai Görgen; Sven Dähne; John-Dylan Haynes; Benjamin Blankertz; Felix Bießmann

The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via brain-computer interfaces, it is most important to accurately extract the neural processes specific to a certain mental state. These equally important but complementary objectives require different analysis methods. Determining the origin of neural processes in time or space from the parameters of a data-driven model requires what we call a forward model of the data; such a model explains how the measured data was generated from the neural sources. Examples are general linear models (GLMs). Methods for the extraction of neural information from data can be considered as backward models, as they attempt to reverse the data generating process. Examples are multivariate classifiers. Here we demonstrate that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study. In contrast, the interpretation of backward model parameters can lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since significant nonzero weights may also be observed at channels the activity of which is statistically independent of the brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward models into forward models. This procedure enables the neurophysiological interpretation of the parameters of linear backward models. We hope that this work raises awareness for an often encountered problem and provides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses.


Frontiers in Neuroscience | 2010

The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology

Benjamin Blankertz; Michael Tangermann; Carmen Vidaurre; Siamac Fazli; Claudia Sannelli; Stefan Haufe; Cecilia Maeder; Lenny Ramsey; Irene Sturm; Gabriel Curio; Klaus-Robert Müller

Brain–computer interfacing (BCI) is a steadily growing area of research. While initially BCI research was focused on applications for paralyzed patients, increasingly more alternative applications in healthy human subjects are proposed and investigated. In particular, monitoring of mental states and decoding of covert user states have seen a strong rise of interest. Here, we present some examples of such novel applications which provide evidence for the promising potential of BCI technology for non-medical uses. Furthermore, we discuss distinct methodological improvements required to bring non-medical applications of BCI technology to a diversity of layperson target groups, e.g., ease of use, minimal training, general usability, short control latencies.


NeuroImage | 2013

A critical assessment of connectivity measures for EEG data: a simulation study.

Stefan Haufe; Vadim V. Nikulin; Klaus-Robert Müller; Guido Nolte

Information flow between brain areas is difficult to estimate from EEG measurements due to the presence of noise as well as due to volume conduction. We here test the ability of popular measures of effective connectivity to detect an underlying neuronal interaction from simulated EEG data, as well as the ability of commonly used inverse source reconstruction techniques to improve the connectivity estimation. We find that volume conduction severely limits the neurophysiological interpretability of sensor-space connectivity analyses. Moreover, it may generally lead to conflicting results depending on the connectivity measure and statistical testing approach used. In particular, we note that the application of Granger-causal (GC) measures combined with standard significance testing leads to the detection of spurious connectivity regardless of whether the analysis is performed on sensor-space data or on sources estimated using three different established inverse methods. This empirical result follows from the definition of GC. The phase-slope index (PSI) does not suffer from this theoretical limitation and therefore performs well on our simulated data. We develop a theoretical framework to characterize artifacts of volume conduction, which may still be present even in reconstructed source time series as zero-lag correlations, and to distinguish their time-delayed brain interaction. Based on this theory we derive a procedure which suppresses the influence of volume conduction, but preserves effects related to time-lagged brain interaction in connectivity estimates. This is achieved by using time-reversed data as surrogates for statistical testing. We demonstrate that this robustification makes Granger-causal connectivity measures applicable to EEG data, achieving similar results as PSI. Integrating the insights of our study, we provide a guidance for measuring brain interaction from EEG data. Software for generating benchmark data is made available.


Behavioral and Brain Functions | 2011

Automatic Classification of Artifactual ICA- Components for Artifact Removal in EEG Signals

Irene Winkler; Stefan Haufe; Michael Tangermann

BackgroundArtifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individuals artifacts or have not been shown to reliably identify muscle artifacts.MethodsWe propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects.ResultsBased on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (< 10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components.ConclusionsWe propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.


Journal of Neural Engineering | 2011

EEG potentials predict upcoming emergency brakings during simulated driving

Stefan Haufe; Matthias Sebastian Treder; Manfred Gugler; Max Sagebaum; Gabriel Curio; Benjamin Blankertz

Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the drivers intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h(-1) driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.


NeuroImage | 2008

Combining sparsity and rotational invariance in EEG/MEG source reconstruction.

Stefan Haufe; Vadim V. Nikulin; Andreas Ziehe; Klaus-Robert Müller; Guido Nolte

We introduce Focal Vector Field Reconstruction (FVR), a novel technique for the inverse imaging of vector fields. The method was designed to simultaneously achieve two goals: a) invariance with respect to the orientation of the coordinate system, and b) a preference for sparsity of the solutions and their spatial derivatives. This was achieved by defining the regulating penalty function, which renders the solutions unique, as a global l(1)-norm of local l(2)-norms. We show that the method can be successfully used for solving the EEG inverse problem. In the joint localization of 2-3 simulated dipoles, FVR always reliably recovers the true sources. The competing methods have limitations in distinguishing close sources because their estimates are either too smooth (LORETA, Minimum l(1)-norm) or too scattered (Minimum l(2)-norm). In both noiseless and noisy simulations, FVR has the smallest localization error according to the Earth Movers Distance (EMD), which is introduced here as a meaningful measure to compare arbitrary source distributions. We also apply the method to the simultaneous localization of left and right somatosensory N20 generators from real EEG recordings. Compared to its peers FVR was the only method that delivered correct location of the source in the somatosensory area of each hemisphere in accordance with neurophysiological prior knowledge.


IEEE Transactions on Biomedical Engineering | 2010

Modeling Sparse Connectivity Between Underlying Brain Sources for EEG/MEG

Stefan Haufe; Ryota Tomioka; Guido Nolte; Klaus-Robert Müller; Motoaki Kawanabe

We propose a novel technique to assess functional brain connectivity in electroencephalographic (EEG)/magnetoencephalographic (MEG) signals. Our method, called sparsely connected sources analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the following ingredients: 1) the EEG/MEG is assumed to be a linear mixture of correlated sources following a multivariate autoregressive (MVAR) model; 2) the demixing is estimated jointly with the source MVAR parameters; and 3) overfitting is avoided by using the group lasso penalty. This approach allows us to extract the appropriate level of crosstalk between the extracted sources and, in this manner, we obtain a sparse data-driven model of functional connectivity. We demonstrate the usefulness of SCSA with simulated data and compare it to a number of existing algorithms with excellent results.


Journal of Cognitive Neuroscience | 2009

Now you'll feel it, now you won't: Eeg rhythms predict the effectiveness of perceptual masking

Ruth Schubert; Stefan Haufe; Felix Blankenburg; Arno Villringer; Gabriel Curio

Do ongoing brain states determine conscious perception of an upcoming stimulus? Using the high temporal resolution of EEG, we investigated the relationship between prestimulus neuronal oscillations and the perceptibility of two competing somatosensory stimuli embedded in a backward masking paradigm. We identified two prestimulus EEG signatures predictive for a suprathreshold yet weak target stimulus to become perceptually resistant against masking by a stronger distractor stimulus: (i) over left frontal cortex a desynchronization of the regional beta rhythm (∼20 Hz) 500 msec prior to a perceived target, and (ii) a subsequent additional attenuation of both mu (∼10 Hz) and beta “idling” rhythms over those pericentral sensorimotor cortices which are going to process the upcoming target stimulus. Furthermore, across subjects the probability for target perception strongly correlates with the individual absolute level of pre-target amplitudes in these frequency bands and locations. These signatures significantly differed from the EEG characteristics preceding detected and undetected single stimuli. We suggest that the early activation of left frontal areas involved in top–down attentional control is critical for preventing backward masking and leads the preparation of primary sensory cortices: The ensuing prestimulus suppression of sensory idling rhythms warrants an intensified poststimulus processing, and thus, effectively promotes conscious perception of suprathreshold target stimuli embedded into an ecologically relevant condition featuring competing environmental stimuli.


NeuroImage | 2011

Large-scale EEG/MEG source localization with spatial flexibility.

Stefan Haufe; Ryota Tomioka; Thorsten Dickhaus; Claudia Sannelli; Benjamin Blankertz; Guido Nolte; Klaus-Robert Müller

We propose a novel approach to solving the electro-/magnetoencephalographic (EEG/MEG) inverse problem which is based upon a decomposition of the current density into a small number of spatial basis fields. It is designed to recover multiple sources of possibly different extent and depth, while being invariant with respect to phase angles and rotations of the coordinate system. We demonstrate the methods ability to reconstruct simulated sources of random shape and show that the accuracy of the recovered sources can be increased, when interrelated field patterns are co-localized. Technically, this leads to large-scale mathematical problems, which are solved using recent advances in convex optimization. We apply our method for localizing brain areas involved in different types of motor imagery using real data from Brain-Computer Interface (BCI) sessions. Our approach based on single-trial localization of complex Fourier coefficients yields class-specific focal sources in the sensorimotor cortices.

Collaboration


Dive into the Stefan Haufe's collaboration.

Top Co-Authors

Avatar

Klaus-Robert Müller

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Benjamin Blankertz

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Dähne

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Sannelli

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Frank C. Meinecke

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge