Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Hoppler is active.

Publication


Featured researches published by Stefan Hoppler.


Journal of Cell Science | 2007

Wnt signalling: variety at the core.

Stefan Hoppler; Claire Louise Kavanagh

The Wnt/β-catenin pathway is a conserved cell-cell signalling mechanism in animals that regulates gene expression via TCF/LEF DNA-binding factors to coordinate many cellular processes. Vertebrates normally have four Tcf/Lef genes, which, through alternative splicing and alternative promoter use give rise to a variety of TCF/LEF isoforms. Recent evidence from several experimental systems suggests that this diversity of TCF/LEF factors is functionally important in vertebrates for mediating tissue- and stage-specific Wnt regulation in embryonic development, stem cell differentiation and associated diseases, such as cancer.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2008

Invertebrate aquaporins: a review

Ewan M. Campbell; Andrew Ball; Stefan Hoppler; Alan S. Bowman

Aquaporins (AQPs) or water channels render the lipid bilayer of cell membranes permeable to water. The numerous AQP subtypes present in any given species, the transport properties of each subtype and the variety of methods of their regulation allows different cell types to be transiently or permanently permeable to water or other solutes that AQPs are capable of transporting (e.g. urea or glycerol). AQPs have been well characterized in all vertebrate classes, other than reptilia. Here we review the current state of knowledge of invertebrate AQPs set in the context of the much more thoroughly studied vertebrate AQPs. By phylogenetic analysis of the total AQP complement of several completed insect genomes, we propose a classification system of insect AQPs including three sub-families (DRIP, BIB and PRIP) that have one representative from all the complete insect genomes. The physiological role of AQPs in invertebrates (insects, ticks and nematodes) is discussed, including their function in common invertebrate phenomena such as high-volume liquid diets, cryoprotection and anhydrobiosis.


Developmental Dynamics | 2009

Crosstalk between Wnt and bone morphogenic protein signaling: A turbulent relationship

Nobue Itasaki; Stefan Hoppler

The Wnt and the bone morphogenic protein (BMP) pathways are evolutionarily conserved and essentially independent signaling mechanisms, which, however, often regulate similar biological processes. Wnt and BMP signaling are functionally integrated in many biological processes, such as embryonic patterning in Drosophila and vertebrates, formation of kidney, limb, teeth and bones, maintenance of stem cells, and cancer progression. Detailed inspection of regulation in these and other tissues reveals that Wnt and BMP signaling are functionally integrated in four fundamentally different ways. The molecular mechanism evolved to mediate this integration can also be summarized in four different ways. However, a fundamental aspect of functional and mechanistic interaction between these pathways relies on tissue‐specific mechanisms, which are often not conserved and cannot be extrapolated to other tissues. Integration of the two pathways contributes toward the sophisticated means necessary for creating the complexity of our bodies and the reliable and healthy function of its tissues and organs. Developmental Dynamics 239:16–33, 2010.


Development | 2005

Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/β-catenin signalling in mesoderm development

Fei Liu; Olaf Van Den Broek; Olivier Destrée; Stefan Hoppler

Tcf/Lef transcription factors and β-catenin mediate canonical Wnt signalling, which plays remarkably diverse roles in embryonic development, stem cell renewal and cancer progression. To investigate the molecular mechanisms allowing for these diverse yet specific functions, we studied the several distinct roles for Wnt/β-catenin signalling in early Xenopus development: establishing the dorsal body axis; regulating mesoderm induction; and subsequent ventrolateral patterning. Our previous experiments and the expression patterns of Tcf/Lef factors during these embryonic stages led us to examine whether different Tcf/Lef factors mediate these distinct events downstream of canonical Wnt/β-catenin signalling. By manipulating gene expression with morpholino-driven gene knockdown and capped RNA-mediated rescue, we show that genes encoding different Tcf/Lef transcription factors mediate distinct responses to Wnt signalling in early Xenopus development: Tcf1 and Tcf3 genes are non-redundantly required in mesoderm induction for mediating primarily transcriptional activation and repression, respectively; while ventrolateral patterning requires both Tcf1 and Lef1 genes to express sufficient levels of transcription-activating Tcf factors. Our investigation further identifies that motifs within their central domain, rather than their C-terminus, determine the particular molecular function of Tcf/Lef factors. These findings suggest that Tcf/Lef genes encode factors of different activities, which function together in antagonistic or synergistic ways to modulate the intensity and outcome of Wnt/β-catenin signalling and to trigger tissue-specific responses.


Current Biology | 2000

Inducible gene expression in transgenic Xenopus embryos

Grant N. Wheeler; Fiona S. Hamilton; Stefan Hoppler

The amphibian Xenopus laevis has been successfully used for many years as a model system for studying vertebrate development. Because of technical limitations, however, molecular investigations have mainly concentrated on early stages. We have developed a straightforward method for stage-specific induction of gene expression in transgenic Xenopus embryos [1] [2]. This method is based on the Xenopus heat shock protein 70 (Xhsp70 [3]) promoter driving the expression of desired gene products. We found that ubiquitous expression of the transgene is induced upon relatively mild heat treatment. Green fluorescent protein (GFP) was used as a marker to monitor successful induction of gene expression in transgenic embryos. We used this method to study the stage specificity of Wnt signalling function. Transient ectopic Wnt-8 expression during early neurulation was sufficient to repress anterior head development and this capacity was restricted to early stages of neurulation. By transient over-expression at different stages of development, we show that frizzled-7 disrupted morphogenesis sequentially from anterior to posterior along the dorsal axis as development proceeds. These results demonstrate that this method for inducible gene expression in transgenic Xenopus embryos will be a very powerful tool for temporal analysis of gene function and for studying molecular mechanisms of vertebrate organogenesis.


Development | 2008

GATA transcription factors integrate Wnt signalling during heart development.

Boni A. Afouda; Jennifer L. Martin; Fei Liu; Aldo Ciau-Uitz; Roger Patient; Stefan Hoppler

Cardiogenesis is inhibited by canonical Wnt/β-catenin signalling and stimulated by non-canonical Wnt11/JNK signalling, but how these two signalling pathways crosstalk is currently unknown. Here, we show that Wnt/β-catenin signalling restricts cardiogenesis via inhibition of GATA gene expression, as experimentally reinstating GATA function overrides β-catenin-mediated inhibition and restores cardiogenesis. Furthermore, we show that GATA transcription factors in turn directly regulate Wnt11 gene expression, and that Wnt11 is required to a significant degree for mediating the cardiogenesis-promoting function of GATA transcription factors. These results demonstrate that GATA factors occupy a central position between canonical and non-canonical Wnt signalling in regulating heart muscle formation.


Current Biology | 2002

Lef-1 and Tcf-3 Transcription Factors Mediate Tissue-Specific Wnt Signaling during Xenopus Development

Giulietta Roël; Fiona S. Hamilton; Yoony Y.J. Gent; Andrew Bain; Olivier Destrée; Stefan Hoppler

Wnt signaling functions repeatedly during embryonic development to induce different but specific responses. What molecular mechanisms ensure that Wnt signaling triggers the correct tissue-specific response in different tissues? Early Xenopus development is an ideal model for addressing this fundamental question, since there is a dramatic change in the response to Wnt signaling at the onset of zygotic gene transcription: Wnt signaling components encoded by maternal mRNA establish the dorsal embryonic axis; zygotically expressed Xwnt-8 causes almost the opposite, by promoting ventral and lateral and restricting dorsal mesodermal development. Although Wnt signaling can function through different signal transduction cascades, the same beta-catenin-dependent, canonical Wnt signal transduction pathway mediates Wnt signaling at both stages of Xenopus development. Here we show that, while the function of the transcription factor XTcf-3 is required for early Wnt signaling to establish the dorsal embryonic axis, closely related XLef-1 is required for Wnt signaling to pattern the mesoderm after the onset of zygotic transcription. Our results show for the first time that different transcription factors of the Lef/Tcf family function in different tissues to bring about tissue-specific responses downstream of canonical Wnt signaling.


Mechanisms of Development | 1999

Two novel Xenopus frizzled genes expressed in developing heart and brain

Grant N. Wheeler; Stefan Hoppler

A family of genes related to the Drosophila wingless receptor frizzled have been found in vertebrates. We have cloned full length cDNAs of two novel frizzled genes from embryonic Xenopus tissue. We are calling them Xfz7 and Xfz9 (for Xenopus frizzled) because their deduced peptide sequences show extensive similarity to other vertebrate frizzled molecules. Xfz7 is closely related to human, chick and mouse frz-7 and Xfz9 is most related to human FZD9 and mouse fzd9. Xfz7 is expressed in a broad, complex and dynamic pattern beginning at gastrulation. At later stages Xfz7 expression is found in neural crest, neural tube, eye, pronephric duct and the heart. Xfz9 expression in contrast is more restricted to the neuroectoderm and, at later stages of development, to the dorsal regions of the mid- and hindbrain.


Development | 2016

Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules

Yukio Nakamura; Eduardo de Paiva Alves; Gert Jan C. Veenstra; Stefan Hoppler

Key signalling pathways, such as canonical Wnt/β-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear β-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling, mechanisms controlling stage- or tissue-specific transcriptional responses remain elusive. Here, a direct comparison of genome-wide occupancy of β-catenin with a stage-matched Wnt-regulated transcriptome reveals that only a subset of β-catenin-bound genomic loci are transcriptionally regulated by Wnt signalling. We demonstrate that Wnt signalling regulates β-catenin binding to Wnt target genes not only when they are transcriptionally regulated, but also in contexts in which their transcription remains unaffected. The transcriptional response to Wnt signalling depends on additional mechanisms, such as BMP or FGF signalling for the particular genes we investigated, which do not influence β-catenin recruitment. Our findings suggest a more general paradigm for Wnt-regulated transcriptional mechanisms, which is relevant for tissue-specific functions of Wnt/β-catenin signalling in embryonic development but also for stem cell-mediated homeostasis and cancer. Chromatin association of β-catenin, even to functional Wnt-response elements, can no longer be considered a proxy for identifying transcriptionally Wnt-regulated genes. Context-dependent mechanisms are crucial for transcriptional activation of Wnt/β-catenin target genes subsequent to β-catenin recruitment. Our conclusions therefore also imply that Wnt-regulated β-catenin binding in one context can mark Wnt-regulated transcriptional target genes for different contexts. Highlighted article: Dual ChIP-seq and RNA-seq in vivo experiments show that the context-specific events that occur subsequent to β-catenin binding enable gene-specific regulation, rather than β-catenin recruitment per se.


Developmental Biology | 2008

Wnt6 signaling regulates heart muscle development during organogenesis

Danielle L. Lavery; Jennifer C. Martin; Yvonne D. Turnbull; Stefan Hoppler

Mesodermal tissue with heart forming potential (cardiogenic mesoderm) is induced during gastrulation. This cardiogenic mesoderm later differentiates into heart muscle tissue (myocardium) and non-muscular heart tissue. Inhibition of Wnt/beta-catenin signaling is known to be required early for induction of cardiogenic mesoderm; however, the identity of the inhibiting Wnt signal itself is still elusive. We have identified Wnt6 in Xenopus as an endogenous Wnt signal, which is expressed in tissues close to and later inside the developing heart. Our loss-of-function experiments show that Wnt6 function is required in the embryo to prevent development of an abnormally large heart muscle. We find, however, that Wnt6 is not required as expected during gastrulation stages, but later during organogenesis stages just before cells of the cardiogenic mesoderm begin to differentiate into heart muscle (myocardium). Our gain-of-function experiments show that Wnt6 and also activated canonical Wnt/beta-catenin signaling are capable of restricting heart muscle development at these relatively late stages of development. This repressive role of Wnt signaling is mediated initially via repression of cardiogenic transcription factors, since reinstatement of GATA function can rescue expression of other cardiogenic transcription factors and downstream cardiomyogenic differentiation genes.

Collaboration


Dive into the Stefan Hoppler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Liu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge