Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan J. Kiebel is active.

Publication


Featured researches published by Stefan J. Kiebel.


NeuroImage | 2002

Classical and Bayesian inference in neuroimaging: Applications

K. J. Friston; Daniel E. Glaser; Richard N. Henson; Stefan J. Kiebel; Christophe Phillips; John Ashburner

In Friston et al. ((2002) Neuroimage 16: 465-483) we introduced empirical Bayes as a potentially useful way to estimate and make inferences about effects in hierarchical models. In this paper we present a series of models that exemplify the diversity of problems that can be addressed within this framework. In hierarchical linear observation models, both classical and empirical Bayesian approaches can be framed in terms of covariance component estimation (e.g., variance partitioning). To illustrate the use of the expectation-maximization (EM) algorithm in covariance component estimation we focus first on two important problems in fMRI: nonsphericity induced by (i) serial or temporal correlations among errors and (ii) variance components caused by the hierarchical nature of multisubject studies. In hierarchical observation models, variance components at higher levels can be used as constraints on the parameter estimates of lower levels. This enables the use of parametric empirical Bayesian (PEB) estimators, as distinct from classical maximum likelihood (ML) estimates. We develop this distinction to address: (i) The difference between response estimates based on ML and the conditional means from a Bayesian approach and the implications for estimates of intersubject variability. (ii) The relationship between fixed- and random-effect analyses. (iii) The specificity and sensitivity of Bayesian inference and, finally, (iv) the relative importance of the number of scans and subjects. The forgoing is concerned with within- and between-subject variability in multisubject hierarchical fMRI studies. In the second half of this paper we turn to Bayesian inference at the first (within-voxel) level, using PET data to show how priors can be derived from the (between-voxel) distribution of activations over the brain. This application uses exactly the same ideas and formalism but, in this instance, the second level is provided by observations over voxels as opposed to subjects. The ensuing posterior probability maps (PPMs) have enhanced anatomical precision and greater face validity, in relation to underlying anatomy. Furthermore, in comparison to conventional SPMs they are not confounded by the multiple comparison problem that, in a classical context, dictates high thresholds and low sensitivity. We conclude with some general comments on Bayesian approaches to image analysis and on some unresolved issues.


In: Friston, KJ and Ashburner, JT and Kiebel, SJ and Nichols, TE and Penny, WD, (eds.) Statistical parametric mapping: the analysis of functional brain images. (pp. 10-31). Elsevier: Amsterdam. (2007) | 2007

Statistical Parametric Mapping

K. J. Friston; John Ashburner; Stefan J. Kiebel; Thomas E. Nichols; William D. Penny

1. INTRODUCTION This chapter is about making regionally specific inferences in neuroimaging. These inferences may be about differences expressed when comparing one group of subjects to another or, within subjects, over a sequence of observations. They may pertain to structural differences (e.g. in voxel-based morphometry-Ashburner and Friston 2000) or neurophysiological indices of brain functions (e.g. fMRI). The principles of data analysis are very similar for all of these applications and constitute the subject of this chapter. We will focus on the analysis of fMRI time-series because this covers most of the issues that are likely to be encountered in other modalities. Generally, 2 Chapter #1 the analysis of structural images and PET scans is simpler because they do not have to deal with correlated errors, from one scan to the next. A general issue, in data analysis, is the relationship between the neurobiological hypothesis one posits and the statistical models adopted to test that hypothesis. This chapter begins by reviewing the distinction between functional specialization and integration and how these principles serve as the motivation for most analyses of neuroimaging data. We will address the design and analysis of neuroimaging studies from both these perspectives but note that both have to be integrated for a full understanding of brain mapping results. Statistical parametric mapping is generally used to identify functionally specialized brain regions and is the most prevalent approach to characterizing functional anatomy and disease-related changes. The alternative perspective, namely that provided by functional integration, requires a different set of [multivariate] approaches that examine the relationship between changes in activity in one brain area and another. Statistical parametric mapping is a voxel-based approach, employing classical inference, to make some comment about regionally specific responses to experimental factors. In order to assign an observed response to a particular brain structure, or cortical area, the data must conform to a known anatomical space. Before considering statistical modeling, this chapter deals briefly with how a time-series of images are realigned and mapped into some standard anatomical space (e.g. a stereotactic space). The general ideas behind statistical parametric mapping are then described and illustrated with attention to the different sorts of inferences that can be #1. Statistical Parametric Mapping 3 made with different experimental designs. fMRI is special, in the sense that the data lend themselves to a signal processing perspective. This can be exploited to ensure that both the design and analysis are …


NeuroImage | 2002

Classical and Bayesian inference in neuroimaging : Theory

K. J. Friston; William D. Penny; Christophe Phillips; Stefan J. Kiebel; Geoffrey E. Hinton; John Ashburner

This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper.


Philosophical Transactions of the Royal Society B | 2009

Predictive coding under the free-energy principle

K. J. Friston; Stefan J. Kiebel

This paper considers prediction and perceptual categorization as an inference problem that is solved by the brain. We assume that the brain models the world as a hierarchy or cascade of dynamical systems that encode causal structure in the sensorium. Perception is equated with the optimization or inversion of these internal models, to explain sensory data. Given a model of how sensory data are generated, we can invoke a generic approach to model inversion, based on a free energy bound on the models evidence. The ensuing free-energy formulation furnishes equations that prescribe the process of recognition, i.e. the dynamics of neuronal activity that represent the causes of sensory input. Here, we focus on a very general model, whose hierarchical and dynamical structure enables simulated brains to recognize and predict trajectories or sequences of sensory states. We first review hierarchical dynamical models and their inversion. We then show that the brain has the necessary infrastructure to implement this inversion and illustrate this point using synthetic birds that can recognize and categorize birdsongs.


NeuroImage | 2006

Dynamic causal modeling of evoked responses in EEG and MEG.

Olivier David; Stefan J. Kiebel; Lee M. Harrison; Jérémie Mattout; James M. Kilner; K. J. Friston

Neuronally plausible, generative or forward models are essential for understanding how event-related fields (ERFs) and potentials (ERPs) are generated. In this paper, we present a new approach to modeling event-related responses measured with EEG or MEG. This approach uses a biologically informed model to make inferences about the underlying neuronal networks generating responses. The approach can be regarded as a neurobiologically constrained source reconstruction scheme, in which the parameters of the reconstruction have an explicit neuronal interpretation. Specifically, these parameters encode, among other things, the coupling among sources and how that coupling depends upon stimulus attributes or experimental context. The basic idea is to supplement conventional electromagnetic forward models, of how sources are expressed in measurement space, with a model of how source activity is generated by neuronal dynamics. A single inversion of this extended forward model enables inference about both the spatial deployment of sources and the underlying neuronal architecture generating them. Critically, this inference covers long-range connections among well-defined neuronal subpopulations. In a previous paper, we simulated ERPs using a hierarchical neural-mass model that embodied bottom-up, top-down and lateral connections among remote regions. In this paper, we describe a Bayesian procedure to estimate the parameters of this model using empirical data. We demonstrate this procedure by characterizing the role of changes in cortico-cortical coupling, in the genesis of ERPs. In the first experiment, ERPs recorded during the perception of faces and houses were modeled as distinct cortical sources in the ventral visual pathway. Category-selectivity, as indexed by the face-selective N170, could be explained by category-specific differences in forward connections from sensory to higher areas in the ventral stream. We were able to quantify and make inferences about these effects using conditional estimates of connectivity. This allowed us to identify where, in the processing stream, category-selectivity emerged. In the second experiment, we used an auditory oddball paradigm to show that the mismatch negativity can be explained by changes in connectivity. Specifically, using Bayesian model selection, we assessed changes in backward connections, above and beyond changes in forward connections. In accord with theoretical predictions, there was strong evidence for learning-related changes in both forward and backward coupling. These examples show that category- or context-specific coupling among cortical regions can be assessed explicitly, within a mechanistic, biologically motivated inference framework.


NeuroImage | 2008

Multiple sparse priors for the M/EEG inverse problem

K. J. Friston; Lee M. Harrison; Jean Daunizeau; Stefan J. Kiebel; Christophe Phillips; Nelson J. Trujillo-Barreto; Richard N. Henson; Guillaume Flandin; Jérémie Mattout

This paper describes an application of hierarchical or empirical Bayes to the distributed source reconstruction problem in electro- and magnetoencephalography (EEG and MEG). The key contribution is the automatic selection of multiple cortical sources with compact spatial support that are specified in terms of empirical priors. This obviates the need to use priors with a specific form (e.g., smoothness or minimum norm) or with spatial structure (e.g., priors based on depth constraints or functional magnetic resonance imaging results). Furthermore, the inversion scheme allows for a sparse solution for distributed sources, of the sort enforced by equivalent current dipole (ECD) models. This means the approach automatically selects either a sparse or a distributed model, depending on the data. The scheme is compared with conventional applications of Bayesian solutions to quantify the improvement in performance.


Neuron | 2004

Brain responses to the acquired moral status of faces.

Tania Singer; Stefan J. Kiebel; Joel S. Winston; R. J. Dolan; Chris Frith

We examined whether neural responses associated with judgments of socially relevant aspects of the human face extend to stimuli that acquire their significance through learning in a meaningful interactive context, specifically reciprocal cooperation. During fMRI, subjects made gender judgments on faces of people who had been introduced as fair (cooperators) or unfair (defector) players through repeated play of a sequential Prisoners Dilemma game. To manipulate moral responsibility, players were introduced as either intentional or nonintentional agents. Our behavioral (likebility ratings and memory performance) as well as our imaging data confirm the saliency of social fairness for human interactions. Relative to neutral faces, faces of intentional cooperators engendered increased activity in left amygdala, bilateral insula, fusiform gyrus, STS, and reward-related areas. Our data indicate that rapid learning regarding the moral status of others is expressed in altered neural activity within a system associated with social cognition.


NeuroImage | 1996

Brain representation of active and passive movements

Cornelius Weiller; M. Jüptner; S.J. Fellows; Michel Rijntjes; Georg Leonhardt; Stefan J. Kiebel; S. Müller; Hans-Christoph Diener; A.F. Thilmann

During active and passive (driven by a torque motor) flexion and extension of the right elbow, regional cerebral blood flow (rCBF) was measured in six healthy, male volunteers using positron emission tomography and the standard H2(15)O injection technique. During active as well as during passive movements of the right elbow there were strong increases in rCBF, identical in location, amount, and extent in the contralateral sensorimotor cortex. There were activations during both conditions in the supplementary motor area (stronger and more inferior in the active condition) and inferior parietal cortex (on the convexity during active movements and in the depth of the central sulcus during passive movements). During active movements only, activations of the basal ganglia and the cingulate gyrus were found. Brain activations during motor tasks are largely related to the processing of afferent information.


Computational Intelligence and Neuroscience | 2011

EEG and MEG Data Analysis in SPM8

Vladimir Litvak; Jérémie Mattout; Stefan J. Kiebel; Christophe Phillips; Richard N. Henson; James M. Kilner; Gareth R. Barnes; Robert Oostenveld; Jean Daunizeau; Guillaume Flandin; William D. Penny; K. J. Friston

SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.


Biological Cybernetics | 2010

Action and behavior: a free-energy formulation

K. J. Friston; Jean Daunizeau; James M. Kilner; Stefan J. Kiebel

We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz’s agenda to understand the brain in terms of energy minimization. It is fairly easy to show that making inferences about the causes of sensory data can be cast as the minimization of a free-energy bound on the likelihood of sensory inputs, given an internal model of how they were caused. In this article, we consider what would happen if the data themselves were sampled to minimize this bound. It transpires that the ensuing active sampling or inference is mandated by ergodic arguments based on the very existence of adaptive agents. Furthermore, it accounts for many aspects of motor behavior; from retinal stabilization to goal-seeking. In particular, it suggests that motor control can be understood as fulfilling prior expectations about proprioceptive sensations. This formulation can explain why adaptive behavior emerges in biological agents and suggests a simple alternative to optimal control theory. We illustrate these points using simulations of oculomotor control and then apply to same principles to cued and goal-directed movements. In short, the free-energy formulation may provide an alternative perspective on the motor control that places it in an intimate relationship with perception.

Collaboration


Dive into the Stefan J. Kiebel's collaboration.

Top Co-Authors

Avatar

K. J. Friston

University College London

View shared research outputs
Top Co-Authors

Avatar

James M. Kilner

University College London

View shared research outputs
Top Co-Authors

Avatar

Jean Daunizeau

Wellcome Trust Centre for Neuroimaging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge