Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Jentsch is active.

Publication


Featured researches published by Stefan Jentsch.


Nature | 2002

RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO

Carsten Hoege; Boris Pfander; George-Lucian Moldovan; George Pyrowolakis; Stefan Jentsch

The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2–UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA)—a DNA-polymerase sliding clamp involved in DNA synthesis and repair—is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination—which additionally requires MMS2, UBC13 and RAD5—and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.


Cell | 2007

PCNA, the Maestro of the Replication Fork

George-Lucian Moldovan; Boris Pfander; Stefan Jentsch

Inheritance requires genome duplication, reproduction of chromatin and its epigenetic information, mechanisms to ensure genome integrity, and faithful transmission of the information to progeny. Proliferating cell nuclear antigen (PCNA)-a cofactor of DNA polymerases that encircles DNA-orchestrates several of these functions by recruiting crucial players to the replication fork. Remarkably, many factors that are involved in replication-linked processes interact with a particular face of PCNA and through the same interaction domain, indicating that these interactions do not occur simultaneously during replication. Switching of PCNA partners may be triggered by affinity-driven competition, phosphorylation, proteolysis, and modification of PCNA by ubiquitin and SUMO.


Cell | 1999

A Novel Ubiquitination Factor, E4, Is Involved in Multiubiquitin Chain Assembly

Manfred Koegl; Thorsten Hoppe; Stephan Schlenker; Helle D. Ulrich; Thomas Mayer; Stefan Jentsch

Proteins modified by multiubiquitin chains are the preferred substrates of the proteasome. Ubiquitination involves a ubiquitin-activating enzyme, E1, a ubiquitin-conjugating enzyme, E2, and often a substrate-specific ubiquitin-protein ligase, E3. Here we show that efficient multiubiquitination needed for proteasomal targeting of a model substrate requires an additional conjugation factor, named E4. This protein, previously known as UFD2 in yeast, binds to the ubiquitin moieties of preformed conjugates and catalyzes ubiquitin chain assembly in conjunction with E1, E2, and E3. Intriguingly, E4 defines a novel protein family that includes two human members and the regulatory protein NOSA from Dictyostelium required for fruiting body development. In yeast, E4 activity is linked to cell survival under stress conditions, indicating that eukaryotes utilize E4-dependent proteolysis pathways for multiple cellular functions.


Nature Reviews Molecular Cell Biology | 2001

SUMO, UBIQUITIN'S MYSTERIOUS COUSIN

Stefan Müller; Carsten Hoege; George Pyrowolakis; Stefan Jentsch

Covalent modification of cellular proteins by the ubiquitin-like modifier SUMO regulates various cellular processes, such as nuclear transport, signal transduction, stress response and cell-cycle progression. But, in contrast to ubiquitylation, sumoylation does not tag proteins for degradation, but seems to enhance their stability or modulate their subcellular compartmentalization.


Cell | 2000

Activation of a Membrane-Bound Transcription Factor by Regulated Ubiquitin/Proteasome-Dependent Processing

Thorsten Hoppe; Michael Rape; Stephan Schlenker; Helle D. Ulrich; Stefan Jentsch

Processing of integral membrane proteins in order to liberate active proteins is of exquisite cellular importance. Examples are the processing events that govern sterol regulation, Notch signaling, the unfolded protein response, and APP fragmentation linked to Alzheimers disease. In these cases, the proteins are thought to be processed by regulated intramembrane proteolysis, involving site-specific, membrane-localized proteases. Here we show that two homologous yeast transcription factors SPT23 and MGA2 are made as dormant ER/nuclear membrane-localized precursors and become activated by a completely different mechanism that involves ubiquitin/proteasome-dependent processing. SPT23 and MGA2 are relatives of mammalian NF-kappaB and control unsaturated fatty acid levels. Intriguingly, proteasome-dependent processing of SPT23 is regulated by fatty acid pools, suggesting that the precursor itself or interacting partners are sensors of membrane composition or fluidity.


Nature | 2005

SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase

Boris Pfander; George-Lucian Moldovan; Meik Sacher; Carsten Hoege; Stefan Jentsch

Damaged DNA, if not repaired before replication, can lead to replication fork stalling and genomic instability; however, cells can switch to different damage bypass modes that permit replication across lesions. Two main bypasses are controlled by ubiquitin modification of proliferating cell nuclear antigen (PCNA), a homotrimeric DNA-encircling protein that functions as a polymerase processivity factor and regulator of replication-linked functions. Upon DNA damage, PCNA is modified at the conserved lysine residue 164 by either mono-ubiquitin or a lysine-63-linked multi-ubiquitin chain, which induce error-prone or error-free replication bypasses of the lesions. In S phase, even in the absence of exogenous DNA damage, yeast PCNA can be alternatively modified by the small ubiquitin-related modifier protein SUMO; however the consequences of this remain controversial. Here we show by genetic analysis that SUMO-modified PCNA functionally cooperates with Srs2, a helicase that blocks recombinational repair by disrupting Rad51 nucleoprotein filaments. Moreover, Srs2 displays a preference for interacting directly with the SUMO-modified form of PCNA, owing to a specific binding site in its carboxy-terminal tail. Our finding suggests a model in which SUMO-modified PCNA recruits Srs2 in S phase in order to prevent unwanted recombination events of replicating chromosomes.


Cell | 2005

A Series of Ubiquitin Binding Factors Connects CDC48/p97 to Substrate Multiubiquitylation and Proteasomal Targeting

Holger Richly; Michael Rape; Sigurd Braun; Sebastian Rumpf; Carsten Hoege; Stefan Jentsch

Protein degradation in eukaryotes usually requires multiubiquitylation and subsequent delivery of the tagged substrates to the proteasome. Recent studies suggest the involvement of the AAA ATPase CDC48, its cofactors, and other ubiquitin binding factors in protein degradation, but how these proteins work together is unclear. Here we show that these factors cooperate sequentially through protein-protein interactions and thereby escort ubiquitin-protein conjugates to the proteasome. Central to this pathway is the chaperone CDC48/p97, which coordinates substrate recruitment, E4-catalyzed multiubiquitin chain assembly, and proteasomal targeting. Concomitantly, CDC48 prevents the formation of excessive multiubiquitin chain sizes that are surplus to requirements for degradation. In yeast, this escort pathway guides a transcription factor from its activation in the cytosol to its final degradation and also mediates proteolysis at the endoplasmic reticulum by the ERAD pathway.


Nature | 2009

Principles of ubiquitin and SUMO modifications in DNA repair

Steven Bergink; Stefan Jentsch

With the discovery in the late 1980s that the DNA-repair gene RAD6 encodes a ubiquitin-conjugating enzyme, it became clear that protein modification by ubiquitin conjugation has a much broader significance than had previously been assumed. Now, two decades later, ubiquitin and its cousin SUMO are implicated in a range of human diseases, including breast cancer and Fanconi anaemia, giving fresh momentum to studies focused on the relationships between ubiquitin, SUMO and DNA-repair pathways.


The EMBO Journal | 1990

Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins.

Wolfgang Seufert; Stefan Jentsch

Ubiquitin‐conjugating enzymes catalyse the covalent attachment of ubiquitin to target proteins. Members of this enzyme family are involved in strikingly diverse cellular functions: UBC2 (RAD6) is central to DNA repair, UBC3 (CDC34) is involved in cell cycle control. We have cloned the genes for two novel ubiquitin‐conjugating enzymes, UBC4 and UBC5, from the yeast Saccharomyces cerevisiae. These enzymes mediate selective degradation of short‐lived and abnormal proteins. UBC4 and UBC5 are closely related in sequence and complementing in function. Expression of UBC4 and UBC5 genes is heat inducible. UBC4 and UBC5 enzymes generate high mol. wt ubiquitin‐protein conjugates in vivo consistent with previous studies which suggested that attachment of multiple ubiquitin molecules to proteolytic substrates is required for their selective degradation. UBC4 and UBC5 enzymes comprise a major part of total ubiquitin‐conjugation activity in stressed cells. Turnover of short‐lived proteins and canavanyl‐peptides but not of long‐lived proteins is markedly reduced in ubc4ubc5 mutants. Loss of UBC4 and UBC5 activity impairs cell growth, leads to inviability at elevated temperatures or in the presence of an amino acid analog, and induces the stress response.


Cell | 2001

Mobilization of Processed, Membrane-Tethered SPT23 Transcription Factor by CDC48UFD1/NPL4, a Ubiquitin-Selective Chaperone

Michael Rape; Thorsten Hoppe; Ingo H. Gorr; Marian Kalocay; Holger Richly; Stefan Jentsch

The OLE pathway of yeast regulates the level of the ER-bound enzyme Delta9-fatty acid desaturase OLE1, thereby controlling membrane fluidity. A central component of this regulon is the transcription factor SPT23, a homolog of mammalian NF-kappaB. SPT23 is synthesized as an inactive, ER membrane-anchored precursor that is activated by regulated ubiquitin/proteasome-dependent processing (RUP). We now show that SPT23 dimerizes prior to processing and that the processed molecule, p90, retains its ubiquitin modification and initially remains tethered to its unprocessed, membrane-bound SPT23 partner. Subsequently, p90 is liberated from its partner for nuclear targeting by the activity of the chaperone-like CDC48(UFD1/NPL4) complex. Remarkably, this enzyme binds preferentially ubiquitinated substrates, suggesting that CDC48(UFD1/NPL4) is qualified to selectively remove ubiquitin conjugates from protein complexes.

Collaboration


Dive into the Stefan Jentsch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Rape

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Varshavsky

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge