Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Joos is active.

Publication


Featured researches published by Stefan Joos.


Human Genetics | 1993

Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization

Stanislas du Manoir; Michael R. Speicher; Stefan Joos; Evelin Schröck; Susanne Popp; Hartmut Döhner; Gyula Kovacs; Michel Robert-Nicoud; Peter Lichter; Thomas Cremer

Comparative genomic in situ hybridization (CGH) provides a new possibility for searching genomes for imbalanced genetic material. Labeled genomic test DNA, prepared from clinical or tumor specimens, is mixed with differently labeled control DNA prepared from cells with normal chromosome complements. The mixed probe is used for chromosomal in situ suppression (CISS) hybridization to normal metaphase spreads (CGH-metaphase spreads). Hybridized test and control DNA sequences are detected via different fluorochromes, e.g., fluorescein isothiocyanate (FITC) and tetraethylrhodamine isothiocyanate (TRITC). The ratios of FITC/TRITC fluorescence intensities for each chromosome or chromosome segment should then reflect its relative copy number in the test genome compared with the control genome, e.g., 0.5 for monosomies, 1 for disomies, 1.5 for trisomies, etc. Initially, model experiments were designed to test the accuracy of fluorescence ratio measurements on single chromosomes. DNAs from up to five human chromosome-specific plasmid libraries were labeled with biotin and digoxigenin in different hapten proportions. Probe mixtures were used for CISS hybridization to normal human metaphase spreads and detected with FITC and TRITC. An epifluorescence microscope equipped with a cooled charge coupled device (CCD) camera was used for image acquisition. Procedures for fluorescence ratio measurements were developed on the basis of commercial image analysis software. For hapten ratios 4/1, 1/1 and 1/4, fluorescence ratio values measured for individual chromosomes could be used as a single reliable parameter for chromosome identification. Our findings indicate (1) a tight correlation of fluorescence ratio values with hapten ratios, and (2) the potential of fluorescence ratio measurements for multiple color chromosome painting. Subsequently, genomic test DNAs, prepared from a patient with Down syndrome, from blood of a patient with Tcell prolymphocytic leukemia, and from cultured cells of a renal papillary carcinoma cell line, were applied in CGH experiments. As expected, significant differences in the fluorescence ratios could be measured for chromosome types present in different copy numbers in these test genomes, including a trisomy of chromosome 21, the smallest autosome of the human complement. In addition, chromosome material involved in partial gains and losses of the different tumors could be mapped to their normal chromosome counterparts in CGH-metaphase spreads. An alternative and simpler evaluation procedure based on visual inspection of CCD images of CGH-metaphase spreads also yielded consistent results from several independent observers. Pitfalls, methodological improvements, and potential applications of CGH analyses are discussed.


Journal of Clinical Investigation | 2008

BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas

Stefan M. Pfister; Wibke G. Janzarik; Marc Remke; Aurélie Ernst; Wiebke Werft; Natalia Becker; Grischa Toedt; Andrea Wittmann; Christian P. Kratz; Heike Olbrich; Rezvan Ahmadi; Barbara Thieme; Stefan Joos; Bernhard Radlwimmer; Andreas E. Kulozik; Torsten Pietsch; Christel Herold-Mende; Astrid Gnekow; Guido Reifenberger; Andrey Korshunov; Wolfram Scheurlen; Heymut Omran; Peter Lichter

The molecular pathogenesis of pediatric astrocytomas is still poorly understood. To further understand the genetic abnormalities associated with these tumors, we performed a genome-wide analysis of DNA copy number aberrations in pediatric low-grade astrocytomas by using array-based comparative genomic hybridization. Duplication of the BRAF protooncogene was the most frequent genomic aberration, and tumors with BRAF duplication showed significantly increased mRNA levels of BRAF and a downstream target, CCND1, as compared with tumors without duplication. Furthermore, denaturing HPLC showed that activating BRAF mutations were detected in some of the tumors without BRAF duplication. Similarly, a marked proportion of low-grade astrocytomas from adult patients also had BRAF duplication. Both the stable silencing of BRAF through shRNA lentiviral transduction and pharmacological inhibition of MEK1/2, the immediate downstream phosphorylation target of BRAF, blocked the proliferation and arrested the growth of cultured tumor cells derived from low-grade gliomas. Our findings implicate aberrant activation of the MAPK pathway due to gene duplication or mutation of BRAF as a molecular mechanism of pathogenesis in low-grade astrocytomas and suggest inhibition of the MAPK pathway as a potential treatment.


The FASEB Journal | 2003

HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma

Marie Luise Brezniceanu; Kirsten Völp; Susanne Bösser; Christine Solbach; Peter Lichter; Stefan Joos; Martin Zörnig

Apoptosis is a fundamental biological process used to eliminate unwanted cells in a multicellular organism. An increasing number of regulatory proteins have been identified that either promote or inhibit apoptosis. For tumors to arise, apoptosis must be blocked in the transformed cells, for example by mutational overexpression of anti‐apoptotic proteins, which represent attractive target proteins for molecular therapy strategies.


International Journal of Cancer | 2003

Hodgkin's lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2

Stefan Joos; Martin Granzow; Heidi Holtgreve-Grez; Reiner Siebert; Lana Harder; José I. Martín-Subero; Jürgen Wolf; Martyna Adamowicz; Thomas F. E. Barth; Peter Lichter; Anna Jauch

Four Hodgkins lymphoma cell lines (KM‐H2, HDLM‐2, L428, L1236) were analyzed for cytogenetic aberrations, applying multiplex fluorescence in situ hybridization, chromosome banding and comparative genomic hybridization. Each line was characterized by a highly heterogeneous pattern of karyotypic changes with a large spectrum of different translocated chromosomes (range 22–57). A recurrent finding in all cell lines was the presence of chromosomal rearrangements of the short arm of chromosome 2 involving the REL oncogene locus. Furthermore, multiple translocated copies of telomeric chromosomal segments were frequently detected. This resulted in a copy number increase of putative oncogenes, e.g., JAK2 (9p24) in 3 cell lines, FGFR3 (4p16) and CCND2 (12p13) in 2 cell lines as well as MYC (8q24) in 1 cell line. Our data confirm previous cytogenetic results from primary Hodgkins tumors suggesting an important pathogenic role of REL and JAK2 in this disease. In addition, they provide evidence for a novel cytogenetic pathomechanism leading to increased copy numbers of putative oncogenes from terminal chromosomal regions, most probably in the course of chromosomal stabilization by telomeric capture.


Cancer Research | 2004

Microarray-Based Screening for Molecular Markers in Medulloblastoma Revealed STK15 as Independent Predictor for Survival

Kai Neben; Andrey Korshunov; Axel Benner; Gunnar Wrobel; Meinhard Hahn; Felix Kokocinski; Andrey Golanov; Stefan Joos; Peter Lichter

Medulloblastoma, a primitive neuroectodermal tumor of the cerebellum, is one of the most common central nervous system malignancies of childhood. Despite aggressive multimodal therapy, including surgery, irradiation, and chemotherapy, 5-year survival rates have only approached 50-60%. To identify potential candidate genes that predict for overall survival (OS), we performed a gene expression profiling analysis in 35 newly diagnosed medulloblastoma neoplasms. Subsequently, the nine most promising candidate genes were analyzed by immunohistochemistry and fluorescence in situ hybridization on tumor tissue microarrays representing a series of 180 tumors. We found 54 genes in which expression levels predicted for unfavorable survival in medulloblastoma. In line with the gene expression profiling analysis, a positive staining for STK15 (P = 0.0006), stathmin 1 (P = 0.001), and cyclin D1 (P = 0.03) was associated with an unfavorable OS, whereas cyclin B1, DAXX, Ki-67, MYC, NRAS, and p53 showed no statistical significant effect. In comparison to clinically defined parameters such as gender, age, metastatic stage, extent of tumor resection, application of chemotherapy, and tumor grade, positive staining for STK15 was identified as an independent prognostic factor for OS (P = 0.026). Moreover, additional gene copy numbers of MYC (P = 0.003) and STK15 (P = 0.05) predicted for poor survival. The combination of gene expression profiling with tissue microarray experiments allowed the identification of a series of candidate genes that predicts for survival in medulloblastoma. Of the results highlighted by the various data analysis procedures, genes associated with cell proliferation (cyclin D1), transcription (MYC), and especially mitosis (stathmin 1, STK15) appear particularly intriguing with respect to medulloblastoma pathomechanism.


Human Genetics | 1993

Detection of amplified DNA sequences by reverse chromosome painting using genomic tumor DNA as probe

Stefan Joos; Harry Scherthan; Michael R. Speicher; Jürgen Schlegel; Thomas Cremer; Peter Lichter

A modification of “reverse chromosome painting” was carried out using genomic DNA from tumor cells as a complex probe for chromosomal in situ suppression hybridization to normal metaphase chromsome spreads. Amplified DNA sequences contained in such probes showed specific signals, revealing the normal chromosome positions from which these sequences were derived. As a model system, genomic DNAs were analyzed from three tumor cell lines with amplification units including the proto-oncogene c-myc. The smallest amplification unit was about 90 kb and was present in 16–24 copies; the largest unit was bigger than 600 kb and was present in 16–32 copies. Specific signals that co-localized with a differently labeled c-myc probe on chromosome band 8q24 were obtained with genomic DNA from each cell line. In further experiments, genomic DNA derived from primary tumor material was used in the case of a male patient with glioblastoma multiforme (GBM). Southern blot analysis using an epidermal growth factor receptor gene (EGFR) probe that maps to 7p13 indicated the amplification of sequences from this gene. Using reverse chromosome painting, signals were found both on band 7p13 and bands 12q13–q15. Notably, the signal on 12q13–q15 was consistently stronger. The weaker 7p13 signal showed co-localization with the major signal of the differently labeled EGFR probe. A minor signal of this probe was seen on 12q13, suggesting cross-hybridization to ERB3 sequences homologous to EGFR. The results indicate co-amplification of sequences from bands 12q13–q15, in addition to sequences from band 7p13. Several oncogenes map to 12q13–q15 providing candidate genes for a tumor-associated proto-oncogene amplification. Although the nature of the amplified sequences needs to be clarified, this experiment demonstrates the potential of reverse chromosome painting with genomic tumor DNA for rapidly mapping the normal chromosomal localization of the DNA from which the amplified sequences were derived. In addition, a weaker staining of chromosomes 10 and X was consistently observed indicating that these chromosomes were present in only one copy in the GBM genome. This rapid approach can be used to analyze cases where no metaphase spreads from the tumor material are available. It does not require any preknowledge of amplified sequences and can be applied to screen large numbers of tumors.


Seminars in Hematology | 2000

Comparative genomic hybridization: uses and limitations.

Peter Lichter; Stefan Joos; Martin Bentz; Stefan Lampel

Comparative genomic hybridization (CGH) has contributed significantly to the current knowledge of genomic alterations in hematologic malignancies. Characteristic patterns of genomic imbalances not only have confirmed recent classification schemes in non-Hodgkins lymphoma, but they provide a basis for the successful identification of genes with previously unrecognized pathogenic roles in the development of different lymphomas. Based on its technical limitations, there is little reason to apply CGH to chromosomes of metaphase cells in routine diagnostic settings. However, the new approach of CGH to DNA microarrays, a procedure termed matrix-CGH, overcomes most of the limitations and opens new approaches for diagnostics and identification of genetically defined leukemia and lymphoma subgroups. Current efforts to develop leukemia specific matrix-CGH DNA chips, which are designed to meet the clinical needs, are presented and discussed.


Genes, Chromosomes and Cancer | 2001

Gain of chromosome arm 9p is characteristic of primary mediastinal b‐cell lymphoma (MBL): Comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line

Martin Bentz; Thomas F. E. Barth; Silke Brüderlein; Daliah Bock; Michael J. Schwerer; Michael Baudis; Stefan Joos; Andreas Viardot; Alfred C. Feller; Hans Konrad Müller-Hermelink; Peter Lichter; Hartmut Döhner; Peter Möller

Primary mediastinal B‐cell lymphoma (MBL) is an aggressive Non‐Hodgkins Lymphoma, which has been recognized as a distinct disease entity. We performed a comprehensive molecular cytogenetic study analyzing 43 MBLs. By comparative genomic hybridization (CGH), the most common aberrations were gains of chromosome arms 9p and Xq, which were present in 56% and 40% of cases, respectively. Based on the limited resolution of CGH, this technique may underestimate the real incidence of aberrations. Therefore, we also did an interphase cytogenetic study with eight DNA probes mapping to chromosome regions frequently altered in B‐cell lymphomas. With this approach, both 9p and Xq gains were found in more than 70% of cases (75% and 87%, respectively). The findings were compared with results obtained in 308 other B‐cell lymphomas. Gains in 9p were identified in only six of the 308 cases, and only one of these lymphomas with 9p gains was not primarily extranodal in origin (P < 10−20 for CGH data and P < 10−11 for fluorescence in situ hybridization data). We also present a novel MBL cell line, MedB‐1, which carries the genetic aberrations characteristic of this entity.


Gut | 2006

Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas

Kirsten Völp; Marie-Luise Brezniceanu; Susanne Bösser; Thomas Brabletz; Thomas Kirchner; Daniel Göttel; Stefan Joos; Martin Zörnig

Background: High mobility group box 1 (HMGB1) is a non-histone chromosomal protein implicated in a variety of biologically important processes, including transcription, DNA repair, V(D)J recombination, differentiation, and development. Overexpression of HMGB1 inhibits apoptosis, arguing that the molecule may act as an antiapoptotic oncoprotein. Indeed, increased expression of HMGB1 has been reported for several different tumour types. In this study, we analysed human colon carcinoma for HMGB1 as well as for c-IAP2 expression levels. c-IAP2 is an antiapoptotic protein which may be upregulated as a consequence of nuclear factor κB (NFκB) activation via HMGB1. Methods: A comparative genomic hybridisation (CGH) database comprising 1645 cases from different human tumour types was screened to detect cytogenetic changes at the HMGB1 locus. Immunohistochemical staining of human colon tissue microarrays and tumour biopsies, as well as western blot analysis of tumour lysates, were performed to detect elevated HMGB1 and c-IAP2 expression in colon carcinomas. The antiapoptotic potential of HMGB1 was analysed by measuring caspase activities, and luciferase reporter assays and quantitative polymerase chain reaction analysis were employed to confirm NFκB activation and c-IAP2 mRNA upregulation on HMGB1 overexpression. Results: According to CGH analysis, the genomic locus containing the HMGB1 gene was overrepresented in one third (35/96) of colon cancers. Correspondingly, HMGB1 protein levels were significantly elevated in 90% of the 60 colon carcinomas tested compared with corresponding normal tissues evaluable from the same patients. HMGB1 increased NFκB activity and led to co-overexpression of the antiapoptotic NFκB target gene product c-IAP2 in vitro. Furthermore, increased HMGB1 levels correlated with enhanced amounts of c-IAP2 in colon tumours analysed by us. Finally, we demonstrated that HMGB1 overexpression suppressed caspase-9 and caspase-3 activity, suggesting that HMGB1 interferes with the apoptotic machinery at the level of apoptosomal caspase-9 activation. Conclusions: We identified in vitro a molecular pathway triggered by HMGB1 to inhibit apoptosis via c-IAP2 induction. Our data indicate a strong correlation between upregulation of the apoptosis repressing HMGB1 and c-IAP2 proteins in the pathogenesis of colon carcinoma.


Laboratory Investigation | 2002

Automated Screening for Genomic Imbalances using Matrix-Based Comparative Genomic Hybridization

Swen Wessendorf; Björn Fritz; Gunnar Wrobel; Michelle Nessling; Stefan Lampel; Daniel Göettel; Manfred Küepper; Stefan Joos; Ton Hopman; Felix Kokocinski; Hartmut Döhner; Martin Bentz; Carsten Schwaenen; Peter Lichter

Genome-wide screening for chromosomal imbalances using comparative genomic hybridization (CGH) revealed a wealth of data on previously unrecognized tumor-specific genomic alterations. CGH to microarrays of DNA, an approach termed matrix-CGH, allows detection of genomic imbalances at a much higher resolution. We show that matrix CGH is also feasible from small tissue samples requiring universal amplification of genomic DNA. Because widespread application of matrix-CGH experiments using large numbers of DNA targets demands a high degree of automation, we have developed a protocol for a fully automated procedure. The use of specialized instrumentation for the generation of DNA chips, their hybridization, scanning, and evaluation required numerous alterations and modifications of the initial protocol. We here present the elaboration and testing of automated matrix-CGH. A chip consisting of 188 different genomic DNA fragments, cloned in bacterial artificial chromosome (BAC) or P1-derived artificial chromosome (PAC) vectors and immobilized in replicas of 10, was used to assess the performance of the automated protocol in determining the gene dosage variations in tumor cell lines COLO320-HSR, HL60, and NGP. Although ratios of matrix-CGH were highly concordant with results of chromosomal CGH (85%), the dynamic range of the matrix-CGH ratios was highly superior. Investigation of the two amplicons on 8q24 in COLO320-HSR and HL60, containing the MYC gene, revealed a homogeneous amplicon in COLO320-HSR but a heterogeneous amplification pattern in HL60 cells. Although control clones for normalization of the signal ratios can be predicted in cases with defined chromosomal aberrations, in primary tumors such data are often not available, requiring alternative normalization algorithms. Testing such algorithms in a primary high-grade B-cell lymphoma, we show the feasibility of this approach. With the matrix-CGH protocol presented here, robust and reliable detection of genomic gains and losses is accomplished in an automated fashion, which provides the basis for widespread application in tumor and clinical genetics.

Collaboration


Dive into the Stefan Joos's collaboration.

Top Co-Authors

Avatar

Peter Lichter

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunhild Mechtersheimer

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf J. Rieker

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Radlwimmer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge