Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Juranek is active.

Publication


Featured researches published by Stefan Juranek.


Nature | 2008

Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex

Yanli Wang; Stefan Juranek; Haitao Li; Gang Sheng; Thomas Tuschl; Dinshaw J. Patel

Here we report on a 3.0 Å crystal structure of a ternary complex of wild-type Thermus thermophilus argonaute bound to a 5′-phosphorylated 21-nucleotide guide DNA and a 20-nucleotide target RNA containing cleavage-preventing mismatches at the 10–11 step. The seed segment (positions 2 to 8) adopts an A-helical-like Watson–Crick paired duplex, with both ends of the guide strand anchored in the complex. An arginine, inserted between guide-strand bases 10 and 11 in the binary complex, locking it in an inactive conformation, is released on ternary complex formation. The nucleic-acid-binding channel between the PAZ- and PIWI-containing lobes of argonaute widens on formation of a more open ternary complex. The relationship of structure to function was established by determining cleavage activity of ternary complexes containing position-dependent base mismatch, bulge and 2′-O-methyl modifications. Consistent with the geometry of the ternary complex, bulges residing in the seed segments of the target, but not the guide strand, were better accommodated and their complexes were catalytically active.


Nature | 2009

Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes

Yanli Wang; Stefan Juranek; Haitao Li; Gang Sheng; Greg Wardle; Thomas Tuschl; Dinshaw J. Patel

The slicer activity of the RNA-induced silencing complex resides within its Argonaute (Ago) component, in which the PIWI domain provides the catalytic residues governing guide-strand mediated site-specific cleavage of target RNA. Here we report on structures of ternary complexes of Thermus thermophilus Ago catalytic mutants with 5′-phosphorylated 21-nucleotide guide DNA and complementary target RNAs of 12, 15 and 19 nucleotides in length, which define the molecular basis for Mg2+-facilitated site-specific cleavage of the target. We observe pivot-like domain movements within the Ago scaffold on proceeding from nucleation to propagation steps of guide–target duplex formation, with duplex zippering beyond one turn of the helix requiring the release of the 3′-end of the guide from the PAZ pocket. Cleavage assays on targets of various lengths supported this model, and sugar-phosphate-backbone-modified target strands showed the importance of structural and catalytic divalent metal ions observed in the crystal structures.


Nature | 2008

Structure of the guide-strand-containing argonaute silencing complex.

Yanli Wang; Gang Sheng; Stefan Juranek; Thomas Tuschl; Dinshaw J. Patel

The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5′-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson–Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas two critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5′-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3′-end-binding pocket made up of the PAZ domain show little effect.


Development | 2008

The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members

Thalia A. Farazi; Stefan Juranek; Thomas Tuschl

Several distinct classes of small RNAs, some newly identified, have been discovered to play important regulatory roles in diverse cellular processes. These classes include siRNAs, miRNAs, rasiRNAs and piRNAs. Each class binds to distinct members of the Argonaute/Piwi protein family to form ribonucleoprotein complexes that recognize partially, or nearly perfect, complementary nucleic acid targets, and that mediate a variety of regulatory processes, including transcriptional and post-transcriptional gene silencing. Based on the known relationship of Argonaute/Piwi proteins with distinct classes of small RNAs, we can now predict how many new classes of small RNAs or silencing processes remain to be discovered.


Nature Structural & Molecular Biology | 2010

Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I

Yanli Wang; Janos Ludwig; Christine Schuberth; Marion Goldeck; Martin Schlee; Haitao Li; Stefan Juranek; Gang Sheng; Ronald Micura; Thomas Tuschl; Gunther Hartmann; Dinshaw J. Patel

RIG-I is a cytosolic helicase that senses 5′-ppp RNA contained in negative-strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies established that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5′-ppp RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD bound to both blunt ends of a self-complementary 5′-ppp dsRNA 12-mer, with interactions involving 5′-pp clearly visible in the complex. The structure, supported by mutation studies, defines how a lysine-rich basic cleft within the RIG-I CTD sequesters the observable 5′-pp of the bound RNA, with a stacked phenylalanine capping the terminal base pair. Key intermolecular interactions observed in the crystalline state are retained in the complex of 5′-ppp dsRNA 24-mer and full-length RIG-I under in vivo conditions, as evaluated from the impact of binding pocket RIG-I mutations and 2′-OCH3 RNA modifications on the interferon response.


Nature Structural & Molecular Biology | 2008

Telomerase recruitment by the telomere end binding protein-beta facilitates G-quadruplex DNA unfolding in ciliates.

Katrin Paeschke; Stefan Juranek; Tomas Simonsson; Anne Hempel; Daniela Rhodes; Hans J. Lipps

The telomeric G-overhangs of the ciliate Stylonychia lemnae fold into a G-quadruplex DNA structure in vivo. Telomeric G-quadruplex formation requires the presence of two telomere end binding proteins, TEBPα and TEBPβ, and is regulated in a cell-cycle dependent manner. Unfolding of this structure in S phase is dependent on the phosphorylation of TEBPβ. Here we show that TEBPβ phosphorylation is necessary but not sufficient for a G-quadruplex unfolding rate compatible with telomere synthesis. The telomerase seems to be actively involved in telomeric G-quadruplex DNA structure unfolding in vivo. Significantly, the telomerase is recruited to telomeres by phosphorylated TEBPβ, and hence telomerase recruitment is cell-cycle regulated through phosphorylation. These observations allow us to propose a model for the regulation of G-quadruplex unfolding and telomere synthesis during the cell cycle.


Eukaryotic Cell | 2005

snRNA and heterochromatin formation are involved in DNA excision during macronuclear development in stichotrichous ciliates.

Stefan Juranek; Sina Rupprecht; Jan Postberg; Hans J. Lipps

ABSTRACT Several models for specific excision of micronucleus-specific DNA sequences during macronuclear development in ciliates exist. While the template-guided recombination model suggests recombination events resulting in specific DNA excision and reordering of macronucleus-destined sequences (MDS) guided by a template, there is evidence that an RNA interference-related mechanism is involved in DNA elimination in holotrichous ciliates. We describe that in the stichotrichous ciliate Stylonychia, snRNAs homologous to micronucleus-specific sequences are synthesized during macronuclear differentiation. Western and in situ analyses demonstrate that histone H3 becomes methylated at K9 de novo during macronuclear differentiation, and chromatin immunoprecipitation revealed that micronucleus-specific sequences are associated with methylated H3. To link both observations, expression of a PIWI homolog, member of the RNA-induced silencing complex, was silenced. In these cells, the methylated micronucleus-specific histone H3 variant “X” is still present in macronuclear anlagen and no K9 methylation of histone H3 is observed. We suggest that snRNA recruits chromatin-modifying enzymes to sequences to be excised. Based on our and earlier observations, we believe that this mechanism is not sufficient for specific excision of sequences and reordering of MDS in the developing macronucleus and propose a model for internal eliminated sequence excision and MDS reordering in stichotrichous ciliates.


PLOS ONE | 2008

The Pathway to Detangle a Scrambled Gene

Matthias Möllenbeck; Yi Zhou; Andre R. O. Cavalcanti; Franziska Jönsson; Brian P. Higgins; Wei-Jen Chang; Stefan Juranek; Thomas G. Doak; Grzegorz Rozenberg; Hans J. Lipps; Laura F. Landweber

Background Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of transposon-like elements and extensive genome fragmentation, leading to 98% genome reduction in Stylonychia lemnae. Approximately 20–30% of the genes are estimated to be scrambled in the germline micronucleus, with coding segment order permuted and present in either orientation on micronuclear chromosomes. Massive genome rearrangements are therefore critical for development. Methodology/Principal Findings To understand the process of DNA deletion and reorganization during macronuclear development, we examined the population of DNA molecules during assembly of different scrambled genes in two related organisms in a developmental time-course by PCR. The data suggest that removal of conventional IESs usually occurs first, accompanied by a surprising level of error at this step. The complex events of inversion and translocation seem to occur after repair and excision of all conventional IESs and via multiple pathways. Conclusions/Significance This study reveals a temporal order of DNA rearrangements during the processing of a scrambled gene, with simpler events usually preceding more complex ones. The surprising observation of a hidden layer of errors, absent from the mature macronucleus but present during development, also underscores the need for repair or screening of incorrectly-assembled DNA molecules.


Cell Reports | 2015

Discovery and Characterization of piRNAs in the Human Fetal Ovary

Zev Williams; Pavel Morozov; Aleksandra Mihailovic; Carolina Lin; Pavan Kumar Puvvula; Stefan Juranek; Z. Rosenwaks; Thomas Tuschl

Piwi-interacting RNAs (piRNAs), a class of 26- to 32-nt non-coding RNAs (ncRNAs), function in germline development, transposon silencing, and epigenetic regulation. We performed deep sequencing and annotation of untreated and periodate-treated small RNA cDNA libraries from human fetal and adult germline and reference somatic tissues. This revealed abundant piRNAs originating from 150 piRNA-encoding genes, including some exhibiting gender-specific expression, in fetal ovary and adult testis-developmental periods coinciding with mitotic cell divisions expanding fetal germ cells prior to meiotic divisions. The absence of reads mapping uniquely to annotated piRNA genes demonstrated their paucity in fetal testis and adult ovary and absence in somatic tissues. We curated human piRNA-expressing regions and defined their precise borders and observed piRNA-guided cleavage of transcripts antisense to some piRNA-producing genes. This study provides insights into sex-specific mammalian piRNA expression and function and serves as a reference for human piRNA analysis and annotation.


Current Pharmaceutical Design | 2012

Cell cycle regulation of G-quadruplex DNA structures at telomeres.

Stefan Juranek; Katrin Paeschke

DNA and RNA regions containing tracts of guanines can form very stable secondary structures called G-quadruplex (G4). Genomic sequences with the potential to form G4 (G4-motifs) are abundant across species. In all analyzed genomes G4 motifs are found near promoter regions and double strand break sites and at telomeres. Telomeres are very G-rich and prone for G4 formation. Therefore they are routinely used in in vitro and in vivo experiments to elucidate the function of G4 structures in telomere metabolism. Recently various labs demonstrated that telomere length maintenance is mediated via G4 structures. Telomere-binding proteins specifically bind to G4 structure and regulate this structure throughout the cell cycle.

Collaboration


Dive into the Stefan Juranek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dinshaw J. Patel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gang Sheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanli Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleksandra Mihailovic

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Greg Wardle

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Pavel Morozov

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge