Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan K. Arndt is active.

Publication


Featured researches published by Stefan K. Arndt.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cellulose δ18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants

Ansgar Kahmen; Dirk Sachse; Stefan K. Arndt; Kevin P. Tu; Heraldo Farrington; Peter M. Vitousek; Todd E. Dawson

Cellulose in plants contains oxygen that derives in most cases from precipitation. Because the stable oxygen isotope composition, δ18O, of precipitation is associated with environmental conditions, cellulose δ18O should be as well. However, plant physiological models using δ18O suggest that cellulose δ18O is influenced by a complex mix of both climatic and physiological drivers. This influence complicates the interpretation of cellulose δ18O values in a paleo-context. Here, we combined empirical data analyses with mechanistic model simulations to i) quantify the impacts that the primary climatic drivers humidity (ea) and air temperature (Tair) have on cellulose δ18O values in different tropical ecosystems and ii) determine which environmental signal is dominating cellulose δ18O values. Our results revealed that ea and Tair equally influence cellulose δ18O values and that distinguishing which of these factors dominates the δ18O values of cellulose cannot be accomplished in the absence of additional environmental information. However, the individual impacts of ea and Tair on the δ18O values of cellulose can be integrated into a single index of plant-experienced atmospheric vapor demand: the leaf-to-air vapor pressure difference (VPD). We found a robust relationship between VPD and cellulose δ18O values in both empirical and modeled data in all ecosystems that we investigated. Our analysis revealed therefore that δ18O values in plant cellulose can be used as a proxy for VPD in tropical ecosystems. As VPD is an essential variable that determines the biogeochemical dynamics of ecosystems, our study has applications in ecological-, climate-, or forensic-sciences.


Australian Journal of Plant Physiology | 2000

Contrasting adaptations to drought stress in field-grown Ziziphus mauritiana and Prunus persica trees: water relations, osmotic adjustment and carbon isotope composition.

Stefan K. Arndt; Wolfgang Wanek; S. C. Clifford; Marianne Popp

Drought resistance strategies of Ziziphus mauritiana Lamk. and peach (Prunus persica L.) were studied, focusing on changes in leaf water potential, carbon isotope composition, and solute and stress metabolite contents during an annual cycle under natural rainfed conditions at a field site in Zimbabwe. After a 100-d drought period, leaf water potential (yleaf) of peach trees decreased to –2.0 MPa, whereas yleaf of Z. mauritiana remained constant at –0.7 MPa. Values for the natural abundance of 13 C (d13 C) of bulk peach leaves as well as of total water-soluble compounds and soluble sugars of leaves increased gradually, resulting in significantly higher values as drought stress developed, indicative of increased water use efficiency (WUE). By the end of the dry season, both leaves and roots of peach exhibited osmotic adjustment, with significant accumulation of monosaccharide sugars, anions and cations in the leaves. Sorbitol and oxalate accounted for the greatest proportion of solute increases during drought, while foliar sucrose content decreased. In roots, soluble sugars such as sorbitol, glucose and fructose all increased, whereas root starch content decreased. For Z. mauritiana leaves, neither d13 C values nor soluble sugar concentrations changed markedly during the study period, and Z. mauritiana plants showed no osmotic adjustment during the dry season. Data indicate that the two species exhibited different strategies for coping with soil moisture deficits under field conditions. Although Z. mauritiana exhibited the capacity for osmotic adjustment in glasshouse experiments, the trees avoided drought stress in this investigation, which is an indication of a root system that has access to deeper moist soil layers. In contrast, the increased WUE in peach is likely due to stomatal control of water loss with onset of drought stress. The observed active osmotic adjustment to maintain turgor is in contrast to glasshouse studies, where no osmotic adjustment was found, and emphasizes the importance of field studies where stress develops more slowly.


Plant Cell and Environment | 2016

Stable isotopes in leaf water of terrestrial plants

Lucas A. Cernusak; Margaret M. Barbour; Stefan K. Arndt; Alexander W. Cheesman; Nathan B. English; Taylor S. Feild; Brent R. Helliker; Meisha Holloway-Phillips; Joseph A. M. Holtum; Ansgar Kahmen; Francesca A. McInerney; Niels C. Munksgaard; Kevin A. Simonin; Xin Song; Hilary Stuart-Williams; Jason B. West; Graham D. Farquhar

Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated into plant organic matter and atmospheric gases. Models describing evaporative enrichment of leaf water have become increasingly complex over time, reflecting enhanced spatial and temporal resolution. We recommend that practitioners choose a model with a level of complexity suited to their application, and provide guidance. At the same time, there exists some lingering uncertainty about the biophysical processes relevant to patterns of isotopic enrichment in leaf water. An important goal for future research is to link observed variations in isotopic composition to specific anatomical and physiological features of leaves that reflect differences in hydraulic design. New measurement techniques are developing rapidly, enabling determinations of both transpired and leaf water δ(18) O and δ(2) H to be made more easily and at higher temporal resolution than previously possible. We expect these technological advances to spur new developments in our understanding of patterns of stable isotope fractionation in leaf water.


Plant and Soil | 2013

High water users can be drought tolerant: using physiological traits for green roof plant selection

Claire Farrell; Christopher Szota; Nicholas S. G. Williams; Stefan K. Arndt

Background and aimsGreen roofs are often installed to reduce urban stormwater runoff. To optimally achieve this, green roof plants need to use water when available, but reduce transpiration when limited to ensure survival. Succulent species commonly planted on green roofs do not achieve this. Water availability on green roofs is analogous to natural shallow-soil habitats including rock outcrops. We aimed to determine whether granite outcrop species could improve green roof performance by evaluating water use strategies under contrasting water availability.MethodsPhysiological and morphological responses of 12 granite outcrop species with different life-forms (monocots, herbs and shrubs) and a common green roof succulent were compared in well watered (WW) and water deficit (WD) treatments.Key resultsGranite outcrop species showed a variety of water-use strategies. Unlike the green roof succulent all of the granite outcrop species showed plasticity in water use. Monocot and herb species showed high water use under WW but also high water status under WD. This was achieved by large reductions in transpiration under WD. Maintenance of water status was also related to high root mass fraction.ConclusionsBy developing a conceptual model using physiological traits we were able to select species suitable for green roofs. The ideal species for green roofs were high water users which were also drought tolerant.


Bulletin of the American Meteorological Society | 2011

Special- savanna patterns of energy and carbon integrated across the landscape

Jason Beringer; Jorg M. Hacker; Lindsay B. Hutley; Ray Leuning; Stefan K. Arndt; Reza Amiri; Lutz Bannehr; Lucas A. Cernusak; Samantha Grover; Carol Hensley; Darren R. Hocking; Peter Isaac; Hizbullah Jamali; Kasturi Devi Kanniah; Stephen J. Livesley; Bruno Neininger; Kyaw Tha Paw U; William Sea; Dennis Straten; Nigel J. Tapper; R. A. Weinmann; Stephen A. Wood; Steve Zegelin

Savannas are highly significant global ecosystems that consist of a mix of trees and grasses and that are highly spatially varied in their physical structure, species composition, and physiological function (i.e., leaf area and function, stem density, albedo, and roughness). Variability in ecosystem characteristics alters biophysical and biogeochemical processes that can affect regional to global circulation patterns, which are not well characterized by land surface models. We initiated a multidisciplinary field campaign called Savanna Patterns of Energy and Carbon Integrated across the Landscape (SPECIAL) during the dry season in Australian savannas to understand the spatial patterns and processes of land surface–atmosphere exchanges (radiation, heat, moisture, CO2, and other trace gasses). We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux transects, aircraft boundary layer budgets, and satellite remote sensing to quantify the spatial variability across a continental-scale rainfall gradient (transect). We found that the structure of vegetation changed along the transect in response to declining average rainfall. Tree basal area decreased from 9.6 m2 ha−1 in the coastal woodland savanna (annual rainfall 1,714 mm yr−1) to 0 m2 ha−1 at the grassland site (annual rainfall 535 mm yr−1), with dry-season green leaf area index (LAI) ranging from 1.04 to 0, respectively. Leaf-level measurements showed that photosynthetic properties were similar along the transect. Flux tower measurements showed that latent heat fluxes (LEs) decreased from north to south with resultant changes in the Bowen ratios (H/LE) from a minimum of 1.7 to a maximum of 15.8, respectively. Gross primary productivity, net carbon dioxide exchange, and LE showed similar declines along the transect and were well correlated with canopy LAI, and fluxes were more closely coupled to structure than floristic change.


Plant and Soil | 2006

Water and Nutrient Dynamics in Surface Roots and Soils are not Modified by Short-term Flooding of Phreatophytic Plants in a Hyperarid Desert

Fanjiang Zeng; Timothy M. Bleby; Peter Landman; Mark A. Adams; Stefan K. Arndt

Little is known of the mechanisms employed by woody plants to acquire key resources such as water and nutrients in hyperarid environments. For phreatophytic plants, deep roots are necessary to access the water table, but given that most nutrients in many desert ecosystems are stored in the upper soil layers, viable shallow roots may be equally necessary for nutrient uptake. We sought to better understand the interaction between water and nutrient uptake from soil horizons differing in the relative abundance of these resources. To this end, we monitored plant water and nutrient status before and after applying flood irrigation to four phreatophytic perennial plant species in the remote hyperarid Taklamakan desert in western China. Sap flow in the roots of five plants of the perennial desert species Alhagi sparsifolia Shap., Karelina caspica (Pall.) Less., Calligonum caput medusea Schrenk, and Eleagnus angustifolia Hill. was monitored using the heat ratio method (HRM). Additionally we measured predawn and midday water potential, foliar nitrate reductase activity (NRA), xylem sap nutrient concentration and the concentration of total solutes in the leaves before, 12 and 96 h after flooding to investigate possible short-term physiological effects on water and nutrient status. Rates of sap flow measured during the day and at night in the absence of transpiration did not change after flooding. Moderately high rates of sap flow (HRM heat pulse velocity, 5–25 cm h−1) detected during the day in soils that had a near zero water content at the surface indicated that all species had contact to groundwater. There was no evidence from sap flow data that plants had utilised flood water to increase maximum rates of transpiration under similar climatic conditions, and there was no evidence of a process to improve the efficiency of water or nutrient uptake, such as hydraulic redistribution (i.e. the passive movement of water from moist soil to very dry soil via roots). Measurements of plant water status, xylem sap nutrient status, foliar NRA and the concentration of osmotically active substances were also unaffected by flood irrigation. Our results clearly show that groundwater acts as the major source of water and nutrients for these plants. The inability of plants to utilise abundant surface soil–water or newly available nutrients following irrigation was attributed to the absence of fine roots in the topsoil layer.


Global Change Biology | 2015

Fire in Australian savannas: from leaf to landscape

Jason Beringer; Lindsay B. Hutley; David Abramson; Stefan K. Arndt; Peter R. Briggs; Mila Bristow; Josep G. Canadell; Lucas A. Cernusak; Derek Eamus; Andrew C. Edwards; Bradleys J. Evans; Benedikt Fest; Klaus Goergen; Samantha Grover; Jorg M. Hacker; Vanessa Haverd; Kasturi Devi Kanniah; Stephen J. Livesley; Amanda H. Lynch; Stefan W. Maier; Caitlin E. Moore; Michael R. Raupach; Jeremy Russell-Smith; Simon Scheiter; Nigel J. Tapper; Petteri Uotila

Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.


Functional Plant Biology | 2002

Nitrogen nutrition during ontogeny of hemiepiphytic Clusia species

Wolfgang Wanek; Stefan K. Arndt; Werner Huber; Marianne Popp

This paper originates from a presentation at the IIIrd International Congress on Crassulacean Acid Metabolism, Cape Tribulation, Queensland, Australia, August 2001. We investigated the nitrogen (N) nutrition of Clusia osaensis, C. peninsulae and C. valerii during the seedling, epiphytic and hemiepiphytic phase in a lowland tropical forest in Costa Rica in order to elucidate nutritional adaptations of different plant growth stages to their habitat. Although all Clusia individuals were non-mycorrhizal, excised roots of seedlings, but also of epiphytic and hemiepiphytic stages, showed a distinct preference for glycine uptake. The shift in main rooting site from canopy soil to terrestrial soil was not reflected by changes in uptake rate or preference, although N availability and the composition of the available N pool changed significantly. High foliar N concentrations indicated that epiphytic seedlings seemed to be sufficiently supplied with N by maternal seed resources and canopy soils. With development, the epiphytic plants of Clusia may face N limitation due to higher N demands with increasing growth and restricted resources in the tree crowns. 15N natural abundance data indicate that epiphytes mainly accessed atmospheric and, to a lesser extent, canopy soil N sources and, after becoming terrestrially anchored, in the hemiepiphytic life stage exploited the larger nutrient reservoir of the ground soil. In consequence, Clusia species did not show an adaptation to the different N availability situations that they experienced whether canopy or ground-rooted.


Global Change Biology | 2016

An ecoclimatic framework for evaluating the resilience of vegetation to water deficit

Patrick J. Mitchell; Anthony P. O'Grady; Elizabeth A. Pinkard; Timothy J. Brodribb; Stefan K. Arndt; Chris J. Blackman; Remko A. Duursma; Rod Fensham; David W. Hilbert; Craig R. Nitschke; Jaymie Norris; Stephen H. Roxburgh; K. Ruthrof; David T. Tissue

The surge in global efforts to understand the causes and consequences of drought on forest ecosystems has tended to focus on specific impacts such as mortality. We propose an ecoclimatic framework that takes a broader view of the ecological relevance of water deficits, linking elements of exposure and resilience to cumulative impacts on a range of ecosystem processes. This ecoclimatic framework is underpinned by two hypotheses: (i) exposure to water deficit can be represented probabilistically and used to estimate exposure thresholds across different vegetation types or ecosystems; and (ii) the cumulative impact of a series of water deficit events is defined by attributes governing the resistance and recovery of the affected processes. We present case studies comprising Pinus edulis and Eucalyptus globulus, tree species with contrasting ecological strategies, which demonstrate how links between exposure and resilience can be examined within our proposed framework. These examples reveal how climatic thresholds can be defined along a continuum of vegetation functional responses to water deficit regimes. The strength of this framework lies in identifying climatic thresholds on vegetation function in the absence of more complete mechanistic understanding, thereby guiding the formulation, application and benchmarking of more detailed modelling.


Archive | 2012

Osmotic Adjustment Under Drought Conditions

Gregor J. Sanders; Stefan K. Arndt

In broad terms, plants adapt to drought either by decreasing water loss (reduced stomatal conductance) or by maintaining water uptake. The latter process is facilitated within plant cells by osmotic adjustment (OA), a biochemical mechanism that helps plants to acclimatize to dry and saline conditions. OA results in a net increase of the number of osmotically active substances in the cell. This increase in solutes leads to a more negative osmotic potential, which in turn can improve the degree of cell hydration, maintaining turgor in leaf tissue and in other metabolically active cells. In other words, plants can survive longer and maintain metabolic processes in drying soil if OA occurs. In particular crop cultivars, OA has positively affected growth and yield under drought stress. A wide range of substances can contribute to OA, including inorganic cations and anions, organic acids, carbohydrates, and amino acids. OA is often associated with an accumulation of specific solutes with protective functions. These compatible solutes—rich in hydroxyl (−OH) groups—such as sugars, cyclitols, proline and glycine betaine, can accumulate in the cytoplasm and help to protect cellular proteins, enzymes, and cellular membranes against dehydration. Still, it is important to recognize that individual solutes do not contribute greatly to OA in many species and that OA is mainly achieved by the accumulation of a multitude of solutes. As OA requires the metabolism or uptake of solutes it is generally a slow process, and is sensitive to the timing and intensity of stress. Adding to this inherent variation in expression of OA, there is some evidence that studies have underestimated leaf relative water content (RWC) when quantifying OA. The correct measurement of plant water status, such as RWC, is vital to ensuring an accurate assessment of the relative capacity for OA in different plants.

Collaboration


Dive into the Stefan K. Arndt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Beringer

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanjiang Zeng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge