Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan K Piechnik is active.

Publication


Featured researches published by Stefan K Piechnik.


Journal of Cardiovascular Magnetic Resonance | 2013

Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement

James C. Moon; Daniel Messroghli; Peter Kellman; Stefan K Piechnik; Matthew D. Robson; Martin Ugander; Peter D. Gatehouse; Andrew E. Arai; Matthias G. Friedrich; Stefan Neubauer; Jeanette Schulz-Menger; Erik B. Schelbert

Rapid innovations in cardiovascular magnetic resonance (CMR) now permit the routine acquisition of quantitative measures of myocardial and blood T1 which are key tissue characteristics. These capabilities introduce a new frontier in cardiology, enabling the practitioner/investigator to quantify biologically important myocardial properties that otherwise can be difficult to ascertain clinically. CMR may be able to track biologically important changes in the myocardium by: a) native T1 that reflects myocardial disease involving the myocyte and interstitium without use of gadolinium based contrast agents (GBCA), or b) the extracellular volume fraction (ECV)–a direct GBCA-based measurement of the size of the extracellular space, reflecting interstitial disease. The latter technique attempts to dichotomize the myocardium into its cellular and interstitial components with estimates expressed as volume fractions. This document provides recommendations for clinical and research T1 and ECV measurement, based on published evidence when available and expert consensus when not. We address site preparation, scan type, scan planning and acquisition, quality control, visualisation and analysis, technical development. We also address controversies in the field. While ECV and native T1 mapping appear destined to affect clinical decision making, they lack multi-centre application and face significant challenges, which demand a community-wide approach among stakeholders. At present, ECV and native T1 mapping appear sufficiently robust for many diseases; yet more research is required before a large-scale application for clinical decision-making can be recommended.


Critical Care Medicine | 2002

Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury.

Luzius A. Steiner; Marek Czosnyka; Stefan K Piechnik; Piotr Smielewski; Doris A. Chatfield; David K. Menon; John D. Pickard

Objectives To define optimal cerebral perfusion pressure (CPPOPT) in individual head-injured patients using continuous monitoring of cerebrovascular pressure reactivity. To test the hypothesis that patients with poor outcome were managed at a cerebral perfusion pressure (CPP) differing more from their CPPOPT than were patients with good outcome. Design Retrospective analysis of prospectively collected data. Setting Neurosciences critical care unit of a university hospital. Patients A total of 114 head-injured patients admitted between January 1997 and August 2000 with continuous monitoring of mean arterial blood pressure (MAP) and intracranial pressure (ICP). Measurements and Main Results MAP, ICP, and CPP were continuously recorded and a pressure reactivity index (PRx) was calculated online. PRx is the moving correlation coefficient recorded over 4-min periods between averaged values (6-sec periods) of MAP and ICP representing cerebrovascular pressure reactivity. When cerebrovascular reactivity is intact, PRx has negative or zero values, otherwise PRx is positive. Outcome was assessed at 6 months using the Glasgow Outcome Scale. A total of 13,633 hrs of data were recorded. CPPOPT was defined as the CPP where PRx reaches its minimum value when plotted against CPP. Identification of CPPOPT was possible in 68 patients (60%). In 22 patients (27%), CPPOPT was not found because it presumably lay outside the studied range of CPP. Patients’ outcome correlated with the difference between CPP and CPPOPT for patients who were managed on average below CPPOPT (r = .53, p < .001) and for patients whose mean CPP was above CPPOPT (r = −.40, p < .05). Conclusions CPPOPT could be identified in a majority of patients. Patients with a mean CPP close to CPPOPT were more likely to have a favorable outcome than those whose mean CPP was more different from CPPOPT. We propose use of the criterion of minimal achievable PRx to guide future trials of CPP oriented treatment in head injured patients.


Journal of Cardiovascular Magnetic Resonance | 2010

Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold

Stefan K Piechnik; Vanessa M Ferreira; Erica Dall'Armellina; Lowri E. Cochlin; Andreas Greiser; Stefan Neubauer; Matthew D. Robson

BackgroundT1 mapping allows direct in-vivo quantitation of microscopic changes in the myocardium, providing new diagnostic insights into cardiac disease. Existing methods require long breath holds that are demanding for many cardiac patients. In this work we propose and validate a novel, clinically applicable, pulse sequence for myocardial T1-mapping that is compatible with typical limits for end-expiration breath-holding in patients.Materials and methodsThe Shortened MOdified Look-Locker Inversion recovery (ShMOLLI) method uses sequential inversion recovery measurements within a single short breath-hold. Full recovery of the longitudinal magnetisation between sequential inversion pulses is not achieved, but conditional interpretation of samples for reconstruction of T1-maps is used to yield accurate measurements, and this algorithm is implemented directly on the scanner. We performed computer simulations for 100 ms<T1 < 2.7 s and heart rates 40-100 bpm followed by phantom validation at 1.5T and 3T. In-vivo myocardial T1-mapping using this method and the previous gold-standard (MOLLI) was performed in 10 healthy volunteers at 1.5T and 3T, 4 volunteers with contrast injection at 1.5T, and 4 patients with recent myocardial infarction (MI) at 3T.ResultsWe found good agreement between the average ShMOLLI and MOLLI estimates for T1 < 1200 ms. In contrast to the original method, ShMOLLI showed no dependence on heart rates for long T1 values, with estimates characterized by a constant 4% underestimation for T1 = 800-2700 ms. In-vivo, ShMOLLI measurements required 9.0 ± 1.1 s (MOLLI = 17.6 ± 2.9 s). Average healthy myocardial T1 s by ShMOLLI at 1.5T were 966 ± 48 ms (mean ± SD) and 1166 ± 60 ms at 3T. In MI patients, the T1 in unaffected myocardium (1216 ± 42 ms) was similar to controls at 3T. Ischemically injured myocardium showed increased T1 = 1432 ± 33 ms (p < 0.001). The difference between MI and remote myocardium was estimated 15% larger by ShMOLLI than MOLLI (p < 0.04) which suffers from heart rate dependencies for long T1. The in-vivo variability within ShMOLLI T1-maps was only 14% (1.5T) or 18% (3T) higher than the MOLLI maps, but the MOLLI acquisitions were twice longer than ShMOLLI acquisitions.ConclusionShMOLLI is an efficient method that generates immediate, high-resolution myocardial T1-maps in a short breath-hold with high precision. This technique provides a valuable clinically applicable tool for myocardial tissue characterisation.


Jacc-cardiovascular Imaging | 2013

Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis.

Theodoros D. Karamitsos; Stefan K Piechnik; Sanjay M. Banypersad; Marianna Fontana; Ntobeko B. Ntusi; Vanessa M Ferreira; Carol J. Whelan; Saul G. Myerson; Matthew D. Robson; Philip N. Hawkins; Stefan Neubauer; James C. Moon

OBJECTIVES This study sought to explore the potential role of noncontrast myocardial T1 mapping for detection of cardiac involvement in patients with primary amyloid light-chain (AL) amyloidosis. BACKGROUND Cardiac involvement carries a poor prognosis in systemic AL amyloidosis. Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is useful for the detection of cardiac amyloid, but characteristic LGE patterns do not always occur or they appear late in the disease. Noncontrast characterization of amyloidotic myocardium with T1 mapping may improve disease detection. Furthermore, quantitative assessment of myocardial amyloid load would be of great value. METHODS Fifty-three AL amyloidosis patients (14 with no cardiac involvement, 11 with possible involvement, and 28 with definite cardiac involvement based on standard biomarker and echocardiographic criteria) underwent CMR (1.5-T) including noncontrast T1 mapping (shortened modified look-locker inversion recovery [ShMOLLI] sequence) and LGE imaging. These were compared with 36 healthy volunteers and 17 patients with aortic stenosis and a comparable degree of left ventricular hypertrophy as the cardiac amyloid patients. RESULTS Myocardial T1 was significantly elevated in cardiac AL amyloidosis patients (1,140 ± 61 ms) compared to normal subjects (958 ± 20 ms, p < 0.001) and patients with aortic stenosis (979 ± 51 ms, p < 0.001). Myocardial T1 was increased in AL amyloid even when cardiac involvement was uncertain (1,048 ± 48 ms) or thought absent (1,009 ± 31 ms). A noncontrast myocardial T1 cutoff of 1,020 ms yielded 92% accuracy for identifying amyloid patients with possible or definite cardiac involvement. In the AL amyloidosis cohort, there were significant correlations between myocardial T1 time and indices of systolic and diastolic dysfunction. CONCLUSIONS Noncontrast T1 mapping has high diagnostic accuracy for detecting cardiac AL amyloidosis, correlates well with markers of systolic and diastolic dysfunction, and is potentially more sensitive for detecting early disease than LGE imaging. Elevated myocardial T1 may represent a direct marker of cardiac amyloid load. Further studies are needed to assess the prognostic significance of T1 elevation.


Journal of Cardiovascular Magnetic Resonance | 2012

Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance

Vanessa M Ferreira; Stefan K Piechnik; Erica Dall’Armellina; Theodoros D. Karamitsos; Jane M. Francis; Robin P. Choudhury; Matthias G. Friedrich; Matthew D. Robson; Stefan Neubauer

BackgroundT2w-CMR is used widely to assess myocardial edema. Quantitative T1-mapping is also sensitive to changes in free water content. We hypothesized that T1-mapping would have a higher diagnostic performance in detecting acute edema than dark-blood and bright-blood T2w-CMR.MethodsWe investigated 21 controls (55 ± 13 years) and 21 patients (61 ± 10 years) with Takotsubo cardiomyopathy or acute regional myocardial edema without infarction. CMR performed within 7 days included cine, T1-mapping using ShMOLLI, dark-blood T2-STIR, bright-blood ACUT2E and LGE imaging. We analyzed wall motion, myocardial T1 values and T2 signal intensity (SI) ratio relative to both skeletal muscle and remote myocardium.ResultsAll patients had acute cardiac symptoms, increased Troponin I (0.15-36.80 ug/L) and acute wall motion abnormalities but no LGE. T1 was increased in patient segments with abnormal and normal wall motion compared to controls (1113 ± 94 ms, 1029 ± 59 ms and 944 ± 17 ms, respectively; p < 0.001). T2 SI ratio using STIR and ACUT2E was also increased in patient segments with abnormal and normal wall motion compared to controls (all p < 0.02). Receiver operator characteristics analysis showed that T1-mapping had a significantly larger area-under-the-curve (AUC = 0.94) compared to T2-weighted methods, whether the reference ROI was skeletal muscle or remote myocardium (AUC = 0.58-0.89; p < 0.03). A T1 value of greater than 990 ms most optimally differentiated segments affected by edema from normal segments at 1.5 T, with a sensitivity and specificity of 92 %.ConclusionsNon-contrast T1-mapping using ShMOLLI is a novel method for objectively detecting myocardial edema with a high diagnostic performance. T1-mapping may serve as a complementary technique to T2-weighted imaging for assessing myocardial edema in ischemic and non-ischemic heart disease, such as quantifying area-at-risk and diagnosing myocarditis.


Heart | 2013

Human non-contrast T1 values and correlation with histology in diffuse fibrosis

Sacha Bull; Steven K White; Stefan K Piechnik; Andrew S. Flett; Vanessa M Ferreira; Margaret Loudon; Jane M Francis; Theodoros D. Karamitsos; Bernard Prendergast; Matthew D. Robson; Stefan Neubauer; James C. Moon; Saul G. Myerson

Background Aortic stenosis (AS) leads to diffuse fibrosis in the myocardium, which is linked to adverse outcome. Myocardial T1 values change with tissue composition. Objective To test the hypothesis that our recently developed non-contrast cardiac magnetic resonance (CMR) T1 mapping sequence could identify myocardial fibrosis without contrast agent. Design, setting and patients A prospective CMR non-contrast T1 mapping study of 109 patients with moderate and severe AS and 33 age- and gender-matched controls. Methods CMR at 1.5 T, including non-contrast T1 mapping using a shortened modified Look–Locker inversion recovery sequence, was carried out. Biopsy samples for histological assessment of collagen volume fraction (CVF%) were obtained in 19 patients undergoing aortic valve replacement. Results There was a significant correlation between T1 values and CVF% (r=0.65, p=0.002). Mean T1 values were significantly longer in all groups with severe AS (972±33 ms in severe asymptomatic, 1014±38 ms in severe symptomatic) than in normal controls (944±16 ms) (p<0.05). The strongest associations with T1 values were for aortic valve area (r=−0.40, p=0.001) and left ventricular mass index (LVMI) (r=0.36, p=0.008), and these were the only independent predictors on multivariate analysis. Conclusions Non-contrast T1 values are increased in patients with severe AS and further increase in symptomatic compared with asymptomatic patients. T1 values lengthened with greater LVMI and correlated with the degree of biopsy-quantified fibrosis. This may provide a useful clinical assessment of diffuse myocardial fibrosis in the future.


Circulation-cardiovascular Imaging | 2013

Identification and Assessment of Anderson-Fabry Disease by Cardiovascular Magnetic Resonance Noncontrast Myocardial T1 Mapping

Daniel Sado; Steven K White; Stefan K Piechnik; Sanjay M. Banypersad; Thomas A. Treibel; Gabriella Captur; Marianna Fontana; Viviana Maestrini; Andrew S. Flett; Matthew D. Robson; Robin H. Lachmann; Elaine Murphy; Atul Mehta; Derralynn Hughes; Stefan Neubauer; Perry M. Elliott; James C. Moon

Background— Anderson-Fabry disease (AFD) is a rare but underdiagnosed intracellular lipid disorder that can cause left ventricular hypertrophy (LVH). Lipid is known to shorten the magnetic resonance imaging parameter T1. We hypothesized that noncontrast T1 mapping by cardiovascular magnetic resonance would provide a novel and useful measure in this disease with potential to detect early cardiac involvement and distinguish AFD LVH from other causes. Methods and Results— Two hundred twenty-seven subjects were studied: patients with AFD (n=44; 55% with LVH), healthy volunteers (n=67; 0% with LVH), patients with hypertension (n=41; 24% with LVH), patients with hypertrophic cardiomyopathy (n=34; 100% with LVH), those with severe aortic stenosis (n=21; 81% with LVH), and patients with definite amyloid light-chain (AL) cardiac amyloidosis (n=20; 100% with LVH). T1 mapping was performed using the shortened modified Look-Locker inversion sequence on a 1.5-T magnet before gadolinium administration with primary results derived from the basal and midseptum. Compared with health volunteers, septal T1 was lower in AFD and higher in other diseases (AFD versus healthy volunteers versus other patients, 882±47, 968±32, 1018±74 milliseconds; P<0.0001). In patients with LVH (n=105), T1 discriminated completely between AFD and other diseases with no overlap. In AFD, T1 correlated inversely with wall thickness (r=−0.51; P=0.0004) and was abnormal in 40% of subjects who did not have LVH. Segmentally, AFD showed pseudonormalization or elevation of T1 in the left ventricular inferolateral wall, correlating with the presence or absence of late gadolinium enhancement (1001±82 versus 891±38 milliseconds; P<0.0001). Conclusions— Noncontrast T1 mapping shows potential as a unique and powerful measurement in the imaging assessment of LVH and AFD.


Circulation-cardiovascular Imaging | 2012

Myocardial Tissue Characterization Using Magnetic Resonance Noncontrast T1 Mapping in Hypertrophic and Dilated Cardiomyopathy

Sairia Dass; Joseph Suttie; Stefan K Piechnik; Vanessa M Ferreira; Cameron Holloway; Rajarshi Banerjee; Masliza Mahmod; Lowri E. Cochlin; Theodoros D. Karamitsos; Matthew D. Robson; Hugh Watkins; Stefan Neubauer

Background—Noncontrast magnetic resonance T1 mapping reflects a composite of both intra- and extracellular signal. We hypothesized that noncontrast T1 mapping can characterize the myocardium beyond that achieved by the well-established late gadolinium enhancement (LGE) technique (which detects focal fibrosis) in both hypertrophic (HCM) and dilated (DCM) cardiomyopathy, by detecting both diffuse and focal fibrosis. Methods and Results—Subjects underwent Cardiovascular Magnetic Resonance imaging at 3T (28 HCM, 18 DCM, and 12 normals). Matching short-axis slices were acquired for cine, T1 mapping, and LGE imaging (0.1 mmol/kg). Circumferential strain was measured in the midventricular slice, and 31P magnetic resonance spectroscopy was acquired for the septum of the midventricular slice. Mean T1 relaxation time was increased in HCM and DCM (HCM 1209±28 ms, DCM 1225±42 ms, normal 1178±13 ms, P<0.05). There was a weak correlation between mean T1 and LGE (r=0.32, P<0.001). T1 values were higher in segments with LGE than in those without (HCM with LGE 1228±41 ms versus no LGE 1192±79 ms, P<0.01; DCM with LGE 1254±73 ms versus no LGE 1217±52 ms, P<0.01). However, in both HCM and DCM, even in segments unaffected by LGE, T1 values were significantly higher than normal (P<0.01). T1 values correlated with disease severity, being increased as wall thickness increased in HCM; conversely, in DCM, T1 values were highest in the thinnest myocardial segments. T1 values also correlated significantly with circumferential strain (r=0.42, P<0.01). Interestingly, this correlation remained statistically significant even for the slices without LGE (r=0.56, P=0.04). Finally, there was also a statistically significant negative correlation between T1 values and phosphocreatine/adenosine triphosphate ratios (r=−0.59, P<0.0001). Conclusions—In HCM and DCM, noncontrast T1 mapping detects underlying disease processes beyond those assessed by LGE in relatively low-risk individuals.


Journal of Cardiovascular Magnetic Resonance | 2012

Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction

Erica Dall'Armellina; Stefan K Piechnik; Vanessa M Ferreira; Quang Le Si; Matthew D. Robson; Jane M. Francis; Florim Cuculi; Rajesh K. Kharbanda; Adrian P. Banning; Robin P. Choudhury; Theodoros D. Karamitsos; Stefan Neubauer

BackgroundCurrent cardiovascular magnetic resonance (CMR) methods, such as late gadolinium enhancement (LGE) and oedema imaging (T2W) used to depict myocardial ischemia, have limitations. Novel quantitative T1-mapping techniques have the potential to further characterize the components of ischemic injury. In patients with myocardial infarction (MI) we sought to investigate whether state-of the art pre-contrast T1-mapping (1) detects acute myocardial injury, (2) allows for quantification of the severity of damage when compared to standard techniques such as LGE and T2W, and (3) has the ability to predict long term functional recovery.Methods3T CMR including T2W, T1-mapping and LGE was performed in 41 patients [of these, 78% were ST elevation MI (STEMI)] with acute MI at 12-48 hour after chest pain onset and at 6 months (6M). Patients with STEMI underwent primary PCI prior to CMR. Assessment of acute regional wall motion abnormalities, acute segmental damaged fraction by T2W and LGE and mean segmental T1 values was performed on matching short axis slices. LGE and improvement in regional wall motion at 6M were also obtained.ResultsWe found that the variability of T1 measurements was significantly lower compared to T2W and that, while the diagnostic performance of acute T1-mapping for detecting myocardial injury was at least as good as that of T2W-CMR in STEMI patients, it was superior to T2W imaging in NSTEMI. There was a significant relationship between the segmental damaged fraction assessed by either by LGE or T2W, and mean segmental T1 values (P < 0.01). The index of salvaged myocardium derived by acute T1-mapping and 6M LGE was not different to the one derived from T2W (P = 0.88). Furthermore, the likelihood of improvement of segmental function at 6M decreased progressively as acute T1 values increased (P < 0.0004).ConclusionsIn acute MI, pre-contrast T1-mapping allows assessment of the extent of myocardial damage. T1-mapping might become an important complementary technique to LGE and T2W for identification of reversible myocardial injury and prediction of functional recovery in acute MI.


Jacc-cardiovascular Imaging | 2014

Native T1 Mapping in Transthyretin Amyloidosis

Marianna Fontana; Sanjay M. Banypersad; Thomas A. Treibel; Viviana Maestrini; Daniel Sado; Steven K White; Silvia Pica; Silvia Castelletti; Stefan K Piechnik; Matthew D. Robson; Janet A. Gilbertson; Dorota Rowczenio; David F. Hutt; Helen J. Lachmann; Ashutosh D. Wechalekar; Carol J. Whelan; Julian D. Gillmore; Philip N. Hawkins; James C. Moon

OBJECTIVES The aims of the study were to explore the ability of native myocardial T1 mapping by cardiac magnetic resonance to: 1) detect cardiac involvement in patients with transthyretin amyloidosis (ATTR amyloidosis); 2) track the cardiac amyloid burden; and 3) detect early disease. BACKGROUND ATTR amyloidosis is an underdiagnosed cause of heart failure, with no truly quantitative test. In cardiac immunoglobulin light-chain amyloidosis (AL amyloidosis), T1 has high diagnostic accuracy and tracks disease. Here, the diagnostic role of native T1 mapping in the other key type of cardiac amyloid, ATTR amyloidosis, is assessed. METHODS A total of 3 groups were studied: ATTR amyloid patients (n = 85; 70 males, age 73 ± 10 years); healthy individuals with transthyretin mutations in whom standard cardiac investigations were normal (n = 8; 3 males, age 47 ± 6 years); and AL amyloid patients (n = 79; 55 males, age 62 ± 10 years). These were compared with 52 healthy volunteers and 46 patients with hypertrophic cardiomyopathy (HCM). All underwent T1 mapping (shortened modified look-locker inversion recovery); ATTR patients and mutation carriers also underwent cardiac 3,3-diphosphono-1,2-propanodicarboxylicacid (DPD) scintigraphy. RESULTS T1 was elevated in ATTR patients compared with HCM and normal subjects (1,097 ± 43 ms vs. 1,026 ± 64 ms vs. 967 ± 34 ms, respectively; both p < 0.0001). In established cardiac ATTR amyloidosis, T1 elevation was not as high as in AL amyloidosis (AL 1,130 ± 68 ms; p = 0.01). Diagnostic performance was similar for AL and ATTR amyloid (vs. HCM: AL area under the curve 0.84 [95% confidence interval: 0.76 to 0.92]; ATTR area under the curve 0.85 [95% confidence interval: 0.77 to 0.92]; p < 0.0001). T1 tracked cardiac amyloid burden as determined semiquantitatively by DPD scintigraphy (p < 0.0001). T1 was not elevated in mutation carriers (952 ± 35 ms) but was in isolated DPD grade 1 (n = 9, 1,037 ± 60 ms; p = 0.001). CONCLUSIONS Native myocardial T1 mapping detects cardiac ATTR amyloid with similar diagnostic performance and disease tracking to AL amyloid, but with lower maximal T1 elevation, and appears to be an early disease marker.

Collaboration


Dive into the Stefan K Piechnik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodoros D. Karamitsos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Moon

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge