Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Kohl is active.

Publication


Featured researches published by Stefan Kohl.


Kidney International | 2014

Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract

Daw Yang Hwang; Gabriel C. Dworschak; Stefan Kohl; Pawaree Saisawat; Asaf Vivante; Alina C. Hilger; Heiko Reutter; Neveen A. Soliman; Radovan Bogdanovic; Elijah O. Kehinde; Velibor Tasic; Friedhelm Hildebrandt

Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease. CAKUT can be caused by monogenic mutations, however, data are lacking on their frequency. Genetic diagnosis has been hampered by genetic heterogeneity and lack of genotype-phenotype correlation. To determine the percentage of cases with CAKUT that can be explained by mutations in known CAKUT genes, we analyzed the coding exons of the 17 known dominant CAKUT-causing genes in a cohort of 749 individuals from 650 families with CAKUT. The most common phenotypes in this CAKUT cohort were 288 with vesicoureteral reflux, 120 with renal hypodysplasia and 90 with unilateral renal agenesis. We identified 37 different heterozygous mutations (33 novel) in 12 of the 17 known genes in 47 patients from 41 of the 650 families (6.3%). These mutations include (number of families): BMP7 (1), CDC5L (1), CHD1L (5), EYA1 (3), GATA3 (2), HNF1B (6), PAX2 (5), RET (3), ROBO2 (4), SALL1 (9), SIX2 (1), and SIX5 (1). Furthermore, several mutations previously reported to be disease-causing are most likely benign variants. Thus, in a large cohort over 6% of families with isolated CAKUT are caused by a mutation in 12 of 17 dominant CAKUT genes. Our report represents one of the most in-depth diagnostic studies of monogenic causes of isolated CAKUT in children.


American Journal of Human Genetics | 2013

ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6

Maimoona A. Zariwala; Heon Yung Gee; Małgorzata Kurkowiak; Dalal A Al-Mutairi; Margaret W. Leigh; Toby W. Hurd; Rim Hjeij; Sharon D. Dell; Moumita Chaki; Gerard W. Dougherty; Mohamed Adan; Philip Spear; Julian Esteve-Rudd; Niki T. Loges; Margaret Rosenfeld; Katrina A. Diaz; Heike Olbrich; Whitney E. Wolf; Eamonn Sheridan; Trevor Batten; Jan Halbritter; Jonathan D. Porath; Stefan Kohl; Svjetlana Lovric; Daw Yang Hwang; Jessica E. Pittman; Kimberlie A. Burns; Thomas W. Ferkol; Scott D. Sagel; Kenneth N. Olivier

Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function.


American Journal of Respiratory and Critical Care Medicine | 2014

Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype

Michael R Knowles; Lawrence E. Ostrowski; Margaret W. Leigh; Patrick R. Sears; Stephanie Davis; Whitney E. Wolf; Milan J. Hazucha; Johnny L. Carson; Kenneth N. Olivier; Scott D. Sagel; Margaret Rosenfeld; Thomas W. Ferkol; Sharon D. Dell; Carlos Milla; Scott H. Randell; Weining Yin; Aruna Sannuti; Hilda Metjian; Peadar G. Noone; Peter J. Noone; Christina A. Olson; Michael V. Patrone; Hong Dang; Hye Seung Lee; Toby W. Hurd; Heon Yung Gee; Edgar A. Otto; Jan Halbritter; Stefan Kohl; Martin Kircher

RATIONALE Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. OBJECTIVES To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. METHODS Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. MEASUREMENTS AND MAIN RESULTS We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. CONCLUSIONS The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.


Journal of Clinical Investigation | 2015

KANK deficiency leads to podocyte dysfunction and nephrotic syndrome

Heon Yung Gee; Fujian Zhang; Shazia Ashraf; Stefan Kohl; Carolin E. Sadowski; Virginia Vega-Warner; Weibin Zhou; Svjetlana Lovric; Humphrey Fang; Margaret Nettleton; Jun Yi Zhu; Julia Hoefele; Lutz T. Weber; Ludmila Podracka; Böör A; Henry Fehrenbach; Jeffrey W. Innis; Joseph Washburn; Shawn Levy; Richard P. Lifton; Edgar A. Otto; Zhe Han; Friedhelm Hildebrandt

Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of progressive renal function decline and affects millions of people. In a recent study, 30% of SRNS cases evaluated were the result of monogenic mutations in 1 of 27 different genes. Here, using homozygosity mapping and whole-exome sequencing, we identified recessive mutations in kidney ankyrin repeat-containing protein 1 (KANK1), KANK2, and KANK4 in individuals with nephrotic syndrome. In an independent functional genetic screen of Drosophila cardiac nephrocytes, which are equivalents of mammalian podocytes, we determined that the Drosophila KANK homolog (dKank) is essential for nephrocyte function. RNAi-mediated knockdown of dKank in nephrocytes disrupted slit diaphragm filtration structures and lacuna channel structures. In rats, KANK1, KANK2, and KANK4 all localized to podocytes in glomeruli, and KANK1 partially colocalized with synaptopodin. Knockdown of kank2 in zebrafish recapitulated a nephrotic syndrome phenotype, resulting in proteinuria and podocyte foot process effacement. In rat glomeruli and cultured human podocytes, KANK2 interacted with ARHGDIA, a known regulator of RHO GTPases in podocytes that is dysfunctional in some types of nephrotic syndrome. Knockdown of KANK2 in cultured podocytes increased active GTP-bound RHOA and decreased migration. Together, these data suggest that KANK family genes play evolutionarily conserved roles in podocyte function, likely through regulating RHO GTPase signaling.


Kidney International | 2014

Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association

Pawaree Saisawat; Stefan Kohl; Alina C. Hilger; Daw-Yang Hwang; Heon Yung Gee; Gabriel C. Dworschak; Velibor Tasic; Tracie Pennimpede; Sivakumar Natarajan; Ethan D. Sperry; Danilo Swann Matassa; Nataša Stajić; Radovan Bogdanovic; Ivo de Blaauw; Carlo Marcelis; Charlotte H. W. Wijers; Enrika Bartels; Eberhard Schmiedeke; Dominik Schmidt; Sabine Grasshoff-Derr; Stefan Holland-Cunz; Michael Ludwig; Markus M. Nöthen; Markus Draaken; Erwin Brosens; Hugo A. Heij; Dick Tibboel; Bernhard G. Herrmann; Benjamin D. Solomon; Annelies de Klein

Congenital abnormalities of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease and they are the most frequent cause of end-stage renal disease in children in the US. However, its genetic etiology remains mostly elusive. VACTERL association is a rare disorder that involves congenital abnormalities in multiple organs including the kidney and urinary tract in up to 60% of the cases. By homozygosity mapping and whole exome resequencing combined with high-throughput mutation analysis by array-based multiplex PCR and next-generation sequencing, we identified recessive mutations in the gene TNF receptor-associated protein 1 (TRAP1) in two families with isolated CAKUT and three families with VACTERL association. TRAP1 is a heat shock protein 90-related mitochondrial chaperone possibly involved in antiapoptotic and endoplasmic reticulum-stress signaling. Trap1 is expressed in renal epithelia of developing mouse kidney E13.5 and in the kidney of adult rats, most prominently in proximal tubules and in thick medullary ascending limbs of Henle’s loop. Thus, we identified mutations in TRAP1 as highly likely causing CAKUT or CAKUT in VACTERL association.


Journal of The American Society of Nephrology | 2014

Mild Recessive Mutations in Six Fraser Syndrome–Related Genes Cause Isolated Congenital Anomalies of the Kidney and Urinary Tract

Stefan Kohl; Daw Yang Hwang; Gabriel C. Dworschak; Alina C. Hilger; Pawaree Saisawat; Asaf Vivante; Nataša Stajić; Radovan Bogdanovic; Heiko Reutter; Elijah O. Kehinde; Velibor Tasic; Friedhelm Hildebrandt

Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately 40% of children with ESRD in the United States. Hitherto, mutations in 23 genes have been described as causing autosomal dominant isolated CAKUT in humans. However, >90% of cases of isolated CAKUT still remain without a molecular diagnosis. Here, we hypothesized that genes mutated in recessive mouse models with the specific CAKUT phenotype of unilateral renal agenesis may also be mutated in humans with isolated CAKUT. We applied next-generation sequencing technology for targeted exon sequencing of 12 recessive murine candidate genes in 574 individuals with isolated CAKUT from 590 families. In 15 of 590 families, we identified recessive mutations in the genes FRAS1, FREM2, GRIP1, FREM1, ITGA8, and GREM1, all of which function in the interaction of the ureteric bud and the metanephric mesenchyme. We show that isolated CAKUT may be caused partially by mutations in recessive genes. Our results also indicate that biallelic missense mutations in the Fraser/MOTA/BNAR spectrum genes cause isolated CAKUT, whereas truncating mutations are found in the multiorgan form of Fraser syndrome. The newly identified recessive biallelic mutations in these six genes represent the molecular cause of isolated CAKUT in 2.5% of the 590 affected families in this study.


Kidney International | 2014

Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies

Heon Yung Gee; Edgar A. Otto; Toby W. Hurd; Shazia Ashraf; Moumita Chaki; Andrew Cluckey; Virginia Vega-Warner; Pawaree Saisawat; Katrina A. Diaz; Humphrey Fang; Stefan Kohl; Susan J. Allen; Rannar Airik; Weibin Zhou; Gokul Ramaswami; Sabine Janssen; Clementine Fu; Jamie L. Innis; Stefanie Weber; Udo Vester; Erica E. Davis; Nicholas Katsanis; Hanan M. Fathy; Nikola Jeck; Gunther Klaus; Ahmet Nayir; Khawla A. Rahim; Ibrahim Al Attrach; Ibrahim Al Hassoun; Savas Ozturk

Rare single-gene disorders cause chronic disease. However, half of the 6,000 recessive single gene causes of disease are still unknown. Because recessive disease genes can illuminate, at least in part, disease pathomechanism, their identification offers direct opportunities for improved clinical management and potentially treatment. Rare diseases comprise the majority of chronic kidney disease (CKD) in children but are notoriously difficult to diagnose. Whole exome resequencing facilitates identification of recessive disease genes. However, its utility is impeded by the large number of genetic variants detected. We here overcome this limitation by combining homozygosity mapping with whole exome resequencing in 10 sib pairs with a nephronophthisis-related ciliopathy, which represents the most frequent genetic cause of CKD in the first three decades of life. In 7 of 10 sib-ships with a histologic or ultrasonographic diagnosis of nephronophthisis-related ciliopathy we detect the causative gene. In six sib-ships we identify mutations of known nephronophthisis-related ciliopathy genes, while in two additional sib-ships we found mutations in the known CKD-causing genes SLC4A1 and AGXT as phenocopies of nephronophthisis-related ciliopathy. Thus whole exome resequencing establishes an efficient, non-invasive approach towards early detection and causation-based diagnosis of rare kidney diseases. This approach can be extended to other rare recessive disorders, thereby providing accurate diagnosis and facilitating the study of disease mechanisms.


Nature Genetics | 2016

Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome

Daniela A. Braun; Carolin E. Sadowski; Stefan Kohl; Svjetlana Lovric; Susanne Adina Astrinidis; Werner L. Pabst; Heon Yung Gee; Shazia Ashraf; Jennifer A. Lawson; Shirlee Shril; Merlin Airik; Weizhen Tan; David Schapiro; Jia Rao; Won-Il Choi; Tobias Hermle; Markus J. Kemper; Martin Pohl; Fatih Ozaltin; Martin Konrad; Radovan Bogdanovic; Rainer Büscher; Udo Helmchen; Erkin Serdaroglu; Richard P. Lifton; Wolfram Antonin; Friedhelm Hildebrandt

Nucleoporins are essential components of the nuclear pore complex (NPC). Only a few diseases have been attributed to NPC dysfunction. Steroid-resistant nephrotic syndrome (SRNS), a frequent cause of chronic kidney disease, is caused by dysfunction of glomerular podocytes. Here we identify in eight families with SRNS mutations in NUP93, its interaction partner NUP205 or XPO5 (encoding exportin 5) as hitherto unrecognized monogenic causes of SRNS. NUP93 mutations caused disrupted NPC assembly. NUP93 knockdown reduced the presence of NUP205 in the NPC, and, reciprocally, a NUP205 alteration abrogated NUP93 interaction. We demonstrate that NUP93 and exportin 5 interact with the signaling protein SMAD4 and that NUP93 mutations abrogated interaction with SMAD4. Notably, NUP93 mutations interfered with BMP7-induced SMAD transcriptional reporter activity. We hereby demonstrate that mutations of NUP genes cause a distinct renal disease and identify aberrant SMAD signaling as a new disease mechanism of SRNS, opening a potential new avenue for treatment.


American Journal of Human Genetics | 2015

Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development

Asaf Vivante; Marc Jens Kleppa; Julian Schulz; Stefan Kohl; Amita Sharma; Jing Chen; Shirlee Shril; Daw Yang Hwang; Anna Carina Weiss; Michael M. Kaminski; Rachel Shukrun; Markus J. Kemper; Anja Lehnhardt; Rolf Beetz; Simone Sanna-Cherchi; Miguel Verbitsky; Ali G. Gharavi; Helen M. Stuart; Sally Feather; Judith A. Goodship; Timothy H.J. Goodship; Adrian S. Woolf; Sjirk J. Westra; Daniel P. Doody; Stuart B. Bauer; Richard S. Lee; Rosalyn M. Adam; Weining Lu; Heiko Reutter; Elijah O. Kehinde

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive. We identified a kindred with an autosomal-dominant form of CAKUT with predominant ureteropelvic junction obstruction. By whole exome sequencing, we identified a heterozygous truncating mutation (c.1010delG) of T-Box transcription factor 18 (TBX18) in seven affected members of the large kindred. A screen of additional families with CAKUT identified three families harboring two heterozygous TBX18 mutations (c.1570C>T and c.487A>G). TBX18 is essential for developmental specification of the ureteric mesenchyme and ureteric smooth muscle cells. We found that all three TBX18 altered proteins still dimerized with the wild-type protein but had prolonged protein half life and exhibited reduced transcriptional repression activity compared to wild-type TBX18. The p.Lys163Glu substitution altered an amino acid residue critical for TBX18-DNA interaction, resulting in impaired TBX18-DNA binding. These data indicate that dominant-negative TBX18 mutations cause human CAKUT by interference with TBX18 transcriptional repression, thus implicating ureter smooth muscle cell development in the pathogenesis of human CAKUT.


Journal of The American Society of Nephrology | 2017

Exome Sequencing Discerns Syndromes in Patients from Consanguineous Families with Congenital Anomalies of the Kidneys and Urinary Tract

Asaf Vivante; Daw-Yang Hwang; Stefan Kohl; Jing Chen; Shirlee Shril; Julian Schulz; Amelie T. van der Ven; Ghaleb Daouk; Neveen A. Soliman; Aravind Selvin Kumar; Prabha Senguttuvan; Elijah O. Kehinde; Velibor Tasic; Friedhelm Hildebrandt

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease-causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1 Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease-causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology-based diagnosis and improved clinical management.

Collaboration


Dive into the Stefan Kohl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asaf Vivante

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Velibor Tasic

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heiko Reutter

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Shirlee Shril

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daw-Yang Hwang

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge