Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Kölker is active.

Publication


Featured researches published by Stefan Kölker.


Annals of Neurology | 2010

Use of guidelines improves the neurological outcome in glutaric aciduria type I

Jana Heringer; Sp Nikolas Boy; Regina Ensenauer; Birgit Assmann; Johannes Zschocke; Inga Harting; Thomas Lücke; Esther M. Maier; Chris Mühlhausen; Gisela Haege; Georg F. Hoffmann; Peter Burgard; Stefan Kölker

To evaluate the effect of treatment according to current evidence‐based recommendations on the neurological outcome of patients with glutaric aciduria type I (GA‐I).


Journal of Inherited Metabolic Disease | 2014

Cross-sectional observational study of 208 patients with non-classical urea cycle disorders

Corinne M. Rüegger; Martin Lindner; Diana Ballhausen; Matthias R. Baumgartner; Skadi Beblo; Anibh M. Das; Matthias Gautschi; Esther M. Glahn; Sarah C. Grünert; Julia B. Hennermann; Michel Hochuli; Martina Huemer; Daniela Karall; Stefan Kölker; Robin H. Lachmann; Amelie S. Lotz-Havla; Dorothea Möslinger; Jean-Marc Nuoffer; Barbara Plecko; Frank Rutsch; René Santer; Ute Spiekerkoetter; Christian Staufner; Tamar Stricker; Frits A. Wijburg; Monique Williams; Peter Burgard; Johannes Häberle

Urea cycle disorders (UCDs) are inherited disorders of ammonia detoxification often regarded as mainly of relevance to pediatricians. Based on an increasing number of case studies it has become obvious that a significant number of UCD patients are affected by their disease in a non-classical way: presenting outside the newborn period, following a mild course, presenting with unusual clinical features, or asymptomatic patients with only biochemical signs of a UCD. These patients are surviving into adolescence and adulthood, rendering this group of diseases clinically relevant to adult physicians as well as pediatricians. In preparation for an international workshop we collected data on all patients with non-classical UCDs treated by the participants in 20 European metabolic centres. Information was collected on a cohort of 208 patients 50% of which were ≥ 16 years old. The largest subgroup (121 patients) had X-linked ornithine transcarbamylase deficiency (OTCD) of whom 83 were female and 29% of these were asymptomatic. In index patients, there was a mean delay from first symptoms to diagnosis of 1.6 years. Cognitive impairment was present in 36% of all patients including female OTCD patients (in 31%) and those 41 patients identified presymptomatically following positive newborn screening (in 12%). In conclusion, UCD patients with non-classical clinical presentations require the interest and care of adult physicians and have a high risk of neurological complications. To improve the outcome of UCDs, a greater awareness by health professionals of the importance of hyperammonemia and UCDs, and ultimately avoidance of the still long delay to correctly diagnose the patients, is crucial.


American Journal of Human Genetics | 2015

Biallelic Mutations in NBAS Cause Recurrent Acute Liver Failure with Onset in Infancy

Tobias B. Haack; Christian Staufner; Marlies G. Köpke; Beate K. Straub; Stefan Kölker; Christian Thiel; Peter Freisinger; Ivo Barić; Patrick McKiernan; Nicola Dikow; Inga Harting; Flemming Beisse; Peter Burgard; Urania Kotzaeridou; Joachim Kühr; Urban Himbert; Robert W. Taylor; Felix Distelmaier; Jerry Vockley; Lina Ghaloul-Gonzalez; Johannes Zschocke; Laura S. Kremer; Elisabeth Graf; Thomas Schwarzmayr; Daniel Magnus Bader; Julien Gagneur; Thomas Wieland; Caterina Terrile; Tim M. Strom; Thomas Meitinger

Acute liver failure (ALF) in infancy and childhood is a life-threatening emergency. Few conditions are known to cause recurrent acute liver failure (RALF), and in about 50% of cases, the underlying molecular cause remains unresolved. Exome sequencing in five unrelated individuals with fever-dependent RALF revealed biallelic mutations in NBAS. Subsequent Sanger sequencing of NBAS in 15 additional unrelated individuals with RALF or ALF identified compound heterozygous mutations in an additional six individuals from five families. Immunoblot analysis of mutant fibroblasts showed reduced protein levels of NBAS and its proposed interaction partner p31, both involved in retrograde transport between endoplasmic reticulum and Golgi. We recommend NBAS analysis in individuals with acute infantile liver failure, especially if triggered by fever.


Molecular Genetics and Metabolism | 2012

Complementary dietary treatment using lysine-free, arginine-fortified amino acid supplements in glutaric aciduria type I — A decade of experience

Stefan Kölker; Sp Nikolas Boy; Jana Heringer; Edith Müller; Esther M. Maier; Regina Ensenauer; Chris Mühlhausen; Andrea Schlune; Cheryl R. Greenberg; David M. Koeller; Georg F. Hoffmann; Gisela Haege; Peter Burgard

The cerebral formation and entrapment of neurotoxic dicarboxylic metabolites (glutaryl-CoA, glutaric and 3-hydroxyglutaric acid) are considered to be important pathomechanisms of striatal injury in glutaric aciduria type I (GA-I). The quantitatively most important precursor of these metabolites is lysine. Recommended therapeutic interventions aim to reduce lysine oxidation (low lysine diet, emergency treatment to minimize catabolism) and to enhance physiologic detoxification of glutaryl-CoA via formation of glutarylcarnitine (carnitine supplementation). It has been recently shown in Gcdh(-/-) mice that cerebral lysine influx and oxidation can be modulated by arginine which competes with lysine for transport at the blood-brain barrier and the inner mitochondrial membrane [Sauer et al., Brain 134 (2011) 157-170]. Furthermore, short-term outcome of 12 children receiving arginine-fortified diet showed very promising results [Strauss et al., Mol. Genet. Metab. 104 (2011) 93-106]. Since lysine-free, arginine-fortified amino acid supplements (AAS) are commercially available and used in Germany for more than a decade, we evaluated the effect of arginine supplementation in a cohort of 34 neonatally diagnosed GA-I patients (median age, 7.43 years; cumulative follow-up period, 221.6 patient years) who received metabolic treatment according to a published guideline [Kölker et al., J. Inherit. Metab. Dis. 30 (2007) 5-22]. Patients used one of two AAS product lines during the first year of life, resulting in differences in arginine consumption [group 1 (Milupa Metabolics): mean=111 mg arginine/kg; group 2 (Nutricia): mean=145 mg arginine/kg; p<0.001]. However, in both groups the daily arginine intake was increased (mean, 137 mg/kg body weight) and the dietary lysine-to-arginine ratio was decreased (mean, 0.7) compared to infants receiving human milk and other natural foods only. All other dietary parameters were in the same range. Despite significantly different arginine intake, the plasma lysine-to-arginine ratio did not differ in both groups. Frequency of dystonia was low (group 1: 12.5%; group 2: 8%) compared with patients not being treated according to the guideline, and gross motor development was similar in both groups. In conclusion, the development of complementary dietary strategies exploiting transport competition between lysine and arginine for treatment of GA-I seems promising. More work is required to understand neuroprotective mechanisms of arginine, to develop dietary recommendations for arginine and to evaluate the usefulness of plasma monitoring for lysine and arginine levels as predictors of cerebral lysine influx.


Journal of Inherited Metabolic Disease | 2013

Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation

Stefan Kölker; Peter Burgard; Sven W. Sauer; Jürgen G. Okun

This review focuses on the pathophysiology of organic acidurias (OADs), in particular, OADs caused by deficient amino acid metabolism. OADs are termed classical if patients present with acute metabolic decompensation and multiorgan dysfunction or cerebral if patients predominantly present with neurological symptoms but without metabolic crises. In both groups, however, the brain is the major target. The high energy demand of the brain, the gate-keeping function of the blood–brain barrier, a high lipid content, vulnerable neuronal subpopulations, and glutamatergic neurotransmission all make the brain particularly vulnerable against mitochondrial dysfunction, oxidative stress, and excitotoxicity. In fact, toxic metabolites in OADs are thought to cause secondary impairment of energy metabolism; some of these toxic metabolites are trapped in the brain. In contrast to cerebral OADs, patients with classical OADs have an increased risk of multiorgan dysfunction. The lack of the anaplerotic propionate pathway, synergistic inhibition of energy metabolism by toxic metabolites, and multiple oxidative phosphorylation (OXPHOS) deficiency may best explain the involvement of organs with a high energy demand. Intriguingly, late-onset organ dysfunction may manifest even under metabolically stable conditions. This might be explained by chronic mitochondrial DNA depletion, increased production of reactive oxygen species, and altered gene expression due to histone modification. In conclusion, pathomechanisms underlying the acute disease manifestation in OADs, with a particular focus on the brain, are partially understood. More work is required to predict the risk and to elucidate the mechanism of late-onset organ dysfunction, extracerebral disease manifestation, and tumorigenesis.


Annals of clinical and translational neurology | 2015

Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement.

Tobias B. Haack; Christopher B. Jackson; Kei Murayama; Laura S. Kremer; André Schaller; Urania Kotzaeridou; Maaike C. de Vries; Gudrun Schottmann; Saikat Santra; Boriana Büchner; Thomas Wieland; Elisabeth Graf; Peter Freisinger; Seila Eggimann; Akira Ohtake; Yasushi Okazaki; Masakazu Kohda; Yoshihito Kishita; Yoshimi Tokuzawa; Sascha Sauer; Yasin Memari; Anja Kolb-Kokocinski; Richard Durbin; Oswald Hasselmann; Kirsten Cremer; Beate Albrecht; Dagmar Wieczorek; Hartmut Engels; Dagmar Hahn; Alexander M. Zink

Short‐chain enoyl‐CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal‐recessive ECHS1 deficiency.


Journal of Inherited Metabolic Disease | 2016

Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options

Christian Staufner; Martin Lindner; Carlo Dionisi-Vici; Peter Freisinger; Dries Dobbelaere; Claire Douillard; Nawal Makhseed; Beate K. Straub; Kimia Kahrizi; Diana Ballhausen; Giancarlo la Marca; Stefan Kölker; Dorothea Haas; Georg F. Hoffmann; Sarah Catharina Grünert; Henk J. Blom

BackgroundAdenosine kinase deficiency is a recently described defect affecting methionine metabolism with a severe clinical phenotype comprising mainly neurological and hepatic impairment and dysmorphism.MethodsClinical data of 11 additional patients from eight families with adenosine kinase deficiency were gathered through a retrospective questionnaire. Two liver biopsies of one patient were systematically evaluated.ResultsThe main clinical symptoms are mild to severe liver dysfunction with neonatal onset, muscular hypotonia, global developmental retardation and dysmorphism (especially frontal bossing). Hepatic involvement is not a constant finding. Most patients have epilepsy and recurrent hypoglycemia due to hyperinsulinism. Major biochemical findings are intermittent hypermethioninemia, increased S-adenosylmethionine and S-adenosylhomocysteine in plasma and increased adenosine in urine. S-adenosylmethionine and S-adenosylhomocysteine are the most reliable biochemical markers. The major histological finding was pronounced microvesicular hepatic steatosis. Therapeutic trials with a methionine restricted diet indicate a potential beneficial effect on biochemical and clinical parameters in four patients and hyperinsulinism was responsive to diazoxide in two patients.ConclusionAdenosine kinase deficiency is a severe inborn error at the cross-road of methionine and adenosine metabolism that mainly causes dysmorphism, brain and liver symptoms, but also recurrent hypoglycemia. The clinical phenotype varies from an exclusively neurological to a multi-organ manifestation. Methionine-restricted diet should be considered as a therapeutic option.


American Journal of Human Genetics | 2016

Biallelic IARS Mutations Cause Growth Retardation with Prenatal Onset, Intellectual Disability, Muscular Hypotonia, and Infantile Hepatopathy

Robert Kopajtich; Kei Murayama; Andreas R. Janecke; Tobias B. Haack; Maximilian Breuer; A.S. Knisely; Inga Harting; Toya Ohashi; Yasushi Okazaki; Daisaku Watanabe; Yoshimi Tokuzawa; Urania Kotzaeridou; Stefan Kölker; Sven W. Sauer; Matthias Carl; Simon Straub; Andreas Entenmann; Elke R. Gizewski; René G. Feichtinger; Johannes A. Mayr; Karoline Lackner; Tim M. Strom; Thomas Meitinger; Thomas Müller; Akira Ohtake; Georg F. Hoffmann; Holger Prokisch; Christian Staufner

tRNA synthetase deficiencies are a growing group of genetic diseases associated with tissue-specific, mostly neurological, phenotypes. In cattle, cytosolic isoleucyl-tRNA synthetase (IARS) missense mutations cause hereditary weak calf syndrome. Exome sequencing in three unrelated individuals with severe prenatal-onset growth retardation, intellectual disability, and muscular hypotonia revealed biallelic mutations in IARS. Studies in yeast confirmed the pathogenicity of identified mutations. Two of the individuals had infantile hepatopathy with fibrosis and steatosis, leading in one to liver failure in the course of infections. Zinc deficiency was present in all affected individuals and supplementation with zinc showed a beneficial effect on growth in one.


Journal of Inherited Metabolic Disease | 2004

Maintenance treatment of glutaryl-CoA dehydrogenase deficiency.

Chris Mühlhausen; Georg F. Hoffmann; K. A. Strauss; Stefan Kölker; Jürgen G. Okun; Cheryl R. Greenberg; Eileen Naughten; Kurt Ullrich

Summary: This paper summarizes the published experience as well as results of the 3rd International Workshop on Glutaryl-CoA Dehydrogenase Deficiency held in October 2003 in Heidelberg, Germany, on the topic treatment of patients with glutaryl-CoA dehydrogenase (GCDH) deficiency. So far no international recommendation for treatment of GCDH deficiency exists. Such an approach is hampered by several facts, namely the lack of an in-depth understanding of the pathophysiology of the disease, the lack of prospective studies, including the evaluation of drug monotherapy, and lack of objective documentation of clinical changes (e.g. video documentation) during pharmacotherapy.


Orphanet Journal of Rare Diseases | 2013

Newborn screening by tandem mass spectrometry for glutaric aciduria type 1: a cost-effectiveness analysis

Johannes Pfeil; Stefan Listl; Georg F. Hoffmann; Stefan Kölker; Martin Lindner; Peter Burgard

BackgroundGlutaric aciduria type I (GA-I) is a rare metabolic disorder caused by inherited deficiency of glutaryl-CoA dehydrogenase. Despite high prognostic relevance of early diagnosis and start of metabolic treatment as well as an additional cost saving potential later in life, only a limited number of countries recommend newborn screening for GA-I. So far only limited data is available enabling health care decision makers to evaluate whether investing into GA-I screening represents value for money. The aim of our study was therefore to assess the cost-effectiveness of newborn screening for GA-I by tandem mass spectrometry (MS/MS) compared to a scenario where GA-I is not included in the MS/MS screening panel.MethodsWe assessed the cost-effectiveness of newborn screening for GA-I against the alternative of not including GA-I in MS/MS screening. A Markov model was developed simulating the clinical course of screened and unscreened newborns within different time horizons of 20 and 70 years. Monte Carlo simulation based probabilistic sensitivity analysis was used to determine the probability of GA-I screening representing a cost-effective therapeutic strategy.ResultsWithin a 20 year time horizon, GA-I screening averts approximately 3.7 DALYs (95% CI 2.9 – 4.5) and about one life year is gained (95% CI 0.7 – 1.4) per 100,000 neonates screened initially . Moreover, the screening programme saves a total of around 30,682 Euro (95% CI 14,343 to 49,176 Euro) per 100,000 screened neonates over a 20 year time horizon.ConclusionWithin the limitations of the present study, extending pre-existing MS/MS newborn screening programmes by GA-I represents a highly cost-effective diagnostic strategy when assessed under conditions comparable to the German health care system.

Collaboration


Dive into the Stefan Kölker's collaboration.

Top Co-Authors

Avatar

Georg F. Hoffmann

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Peter Burgard

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Nikolas Boy

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Jana Heringer

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Staufner

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Jürgen G. Okun

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Sven F. Garbade

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge