Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Lüpold is active.

Publication


Featured researches published by Stefan Lüpold.


Journal of Herpetology | 2003

The Lure Effect, Tadpole Tail Shape, and the Target of Dragonfly Strikes

Josh Van Buskirk; Pia Anderwald; Stefan Lüpold; Luzian Reinhardt; Heidi Schuler

Abstract Tadpoles of many species develop enlarged tail fins in the presence of insect predators, but the function of this response is not known. Because large tails do not improve swimming performance, we tested the hypothesis that the tail attracts predator strikes away from the more vulnerable head and body region. We first confirmed the assumption that attacks to the tail are less dangerous: Living tadpoles escaped from dragonfly larvae only 10% of the time when the strike landed on the head and body but 29.4% of the time when struck on the tail. We then constructed model tadpoles having four tail shapes: normal, predator-induced, and 50% shallower and 50% deeper than normal. The models were presented to dragonflies and the location at which the insects labium struck the model was noted. Models having the predator-induced tail sustained 16% fewer strikes to the head and body than did models with the noninduced tail, lending credibility to the hypothesis that the tail acts as a lure. Models with an unnaturally large tail were attacked more often on the body than was the predator-induced model, which may create stabilizing selection on tail shape.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Resolving variation in the reproductive tradeoff between sperm size and number

Simone Immler; Scott Pitnick; Geoff A. Parker; Kate L. Durrant; Stefan Lüpold; Sara Calhim; Tim R. Birkhead

Spermatozoa are amongst the most variable cells, and three factors are thought to account for this variation in design: fertilization mode, phylogeny, and postcopulatory sexual selection. In addition, it has long been assumed that a tradeoff exists between sperm size and number, and although postcopulatory sexual selection affects both traits, empirical evidence for a tradeoff has so far been elusive. Our recent theoretical model predicts that the nature of a direct tradeoff between sperm size and number varies with sperm competition mechanism and sperm competition risk. We test these predictions using a comparative approach in two very different taxa with different sperm competition mechanisms: passerine birds (mechanism: simple raffle) and Drosophila fruit flies (sperm displacement). We show that in both groups, males increase their total ejaculate investment with increasing sperm competition risk, but whereas passerine birds allocate disproportionately to sperm number, drosophilids allocate disproportionately to sperm size. This striking difference between the two groups can be at least partly explained by sperm competition mechanisms depending on sperm size relative to the size of the female reproductive tract: in large animals (passerines), sperm numbers are advantageous in sperm competition owing to dilution inside the female tract, whereas in small animals (drosophilids), large sperm are advantageous for physical competition (sperm displacement). Our study provides two important results. First, we provide convincing evidence for the existence of a sperm size–number tradeoff. Second, we show that by considering both sperm competition mechanism and dilution, can we account for variation in sperm size between different taxa.


Current Biology | 2012

How Multivariate Ejaculate Traits Determine Competitive Fertilization Success in Drosophila melanogaster

Stefan Lüpold; Mollie K. Manier; Kirstin S. Berben; Kyle J. Smith; Bryan D. Daley; Shannon H. Buckley; John M. Belote; Scott Pitnick

Success in sperm competition, occurring whenever females mate with multiple males, is predicted to be influenced by variation in ejaculate quality and interactions among competing sperm. Yet, apart from sperm number, relevant ejaculate characteristics and sperm-sperm interactions are poorly understood, particularly within a multivariate framework and the natural selective environment of the female reproductive tract. Here, we used isogenic lines of Drosophila melanogaster with distinguishable sperm to demonstrate and partition genetic variation in multiple sperm quality and performance traits. Next, by competing males from different lines, we show how rival sperm significantly influence each others velocity and reveal that males with relatively slow and/or long sperm better displace rival sperm and resist displacement, thus avoiding ejection by the female from her reproductive tract. Finally, we establish fitness consequences of genetic variation in sperm quality and its role in securing a numerical advantage in storage by showing that offspring paternity is determined strictly by the representation of stored, competing sperm. These results provide novel insight into complex postcopulatory processes, illustrate that different ejaculate traits are critical at different biologically relevant time-points, and provide a critical foundation for elucidating the role of postcopulatory sexual selection in trait diversification and speciation.


Molecular Human Reproduction | 2014

Sexual selection and the evolution of sperm quality

John L. Fitzpatrick; Stefan Lüpold

Sperm experience intense and varied selection that dramatically impacts the evolution of sperm quality. Selection acts to ensure that sperm are fertilization-competent and able to overcome the many challenges experienced on their way towards eggs. However, simply being able to fertilize an egg is not enough to ensure male fertility in most species. Owing to the prevalence of female multiple mating throughout the animal kingdom, successful fertilization requires sperm to outcompete rival sperm. In addition, females can actively influence sperm quality, storage or utilization to influence male fertility. This review provides an overview of how these selective forces influence the evolution of sperm quality. After exploring the link between sperm traits and male fertility, we examine how post-mating competition between rival ejaculates influences the evolution of sperm quality. We then describe how complex genetic, social and sexual interactions influence sperm quality, focusing on the importance of seminal fluid and interactions between sperm and the females reproductive tract. In light of the complexities of selection on sperm traits, greater use of multivariate approaches that incorporate male-male, sperm-sperm and sperm-female interactions to study sperm quality will enhance our understanding of how selection acts on sperm traits and factors influencing male fertility. Because the metric of male reproductive success--fertilization--is the same across the animal kingdom, we argue that information about sperm evolution gained from non-human animals has enormous potential to further our understanding of the factors that impact human fertility.


Nature Communications | 2014

Female monopolization mediates the relationship between pre- and postcopulatory sexual traits

Stefan Lüpold; Joseph L. Tomkins; Leigh W. Simmons; John L. Fitzpatrick

Theory predicts a trade-off between investments in precopulatory (ornaments and armaments) and postcopulatory (testes and ejaculates) sexual traits due to the costs associated with their growth and maintenance within the finite energy resources available. Empirical studies, however, have revealed considerable inconsistency in the strength and direction of relationships among these sexual traits. Ambiguity may result from variance in the marginal benefits gained by increasing investments in either pre- or postcopulatory sexual traits. Here, in a broad comparative study, we test the prediction that the relationship between pre- and postcopulatory sexual traits differs among taxa relative to the importance of male-male contest competition within them. We find that covariance between pre- and postcopulatory sexual traits gradually shifts from strongly positive to strongly negative with increasing male-male contest competition. Thus, our findings reveal a potentially unifying explanation for the oftentimes inconsistent relationships in the strength and direction of covariance among sexual traits.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Female mediation of competitive fertilization success in Drosophila melanogaster

Stefan Lüpold; Scott Pitnick; Kirstin S. Berben; Cecilia S. Blengini; John M. Belote; Mollie K. Manier

How females store and use sperm after remating can generate postcopulatory sexual selection on male ejaculate traits. Variation in ejaculate performance traits generally is thought to be intrinsic to males but is likely to interact with the environment in which sperm compete (e.g., the female reproductive tract). Our understanding of female contributions to competitive fertilization success is limited, however, in part because of the challenges involved in observing events within the reproductive tract of internally fertilizing species while discriminating among sperm from competing males. Here, we used females from crosses among isogenic lines of Drosophila melanogaster, each mated to two genetically standardized males (the first with green- and the second with red-tagged sperm heads) to demonstrate heritable variation in female remating interval, progeny production rate, sperm-storage organ morphology, and a number of sperm performance, storage, and handling traits. We then used multivariate analyses to examine relationships between this female-mediated variation and competitive paternity. In particular, the timing of female ejection of excess second-male and displaced first-male sperm was genetically variable and, by terminating the process of sperm displacement, significantly influenced the relative numbers of sperm from each male competing for fertilization, and consequently biased paternity. Our results demonstrate that females do not simply provide a static arena for sperm competition but rather play an active and pivotal role in postcopulatory processes. Resolving the adaptive significance of genetic variation in female-mediated mechanisms of sperm handling is critical for understanding sexual selection, sexual conflict, and the coevolution of male and female reproductive traits.


Evolution | 2013

Rapid Diversification Of Sperm Precedence Traits And Processes Among Three Sibling Drosophila Species

Mollie K. Manier; John M. Belote; Kirstin S. Berben; Stefan Lüpold; Outi Ala-Honkola; William F. Collins; Scott Pitnick

Postcopulatory sexual selection is credited with driving rapid evolutionary diversification of reproductive traits and the formation of reproductive isolating barriers between species. This judgment, however, has largely been inferred rather than demonstrated due to general lack of knowledge about processes and traits underlying variation in competitive fertilization success. Here, we resolved processes determining sperm fate in twice‐mated females, using transgenic Drosophila simulans and Drosophila mauritiana populations with fluorescently labeled sperm heads. Comparisons among these two species and Drosophila melanogaster revealed a shared motif in the mechanisms of sperm precedence, with postcopulatory sexual selection potentially occurring during any of the three discrete stages: (1) insemination; (2) sperm storage; and (3) sperm use for fertilization, and involving four distinct phenomena: (1) sperm transfer; (2) sperm displacement; (3) sperm ejection; and (4) sperm selection for fertilizations. Yet, underlying the qualitative similarities were significant quantitative differences in nearly every relevant character and process. We evaluate these species differences in light of concurrent investigations of within‐population variation in competitive fertilization success and postmating/prezygotic reproductive isolation in hybrid matings between species to forge an understanding of the relationship between microevolutionary processes and macroevolutionary patterns as pertains to postcopulatory sexual selection in this group.


Nature | 2016

How sexual selection can drive the evolution of costly sperm ornamentation.

Stefan Lüpold; Mollie K. Manier; Nalini Puniamoorthy; Christopher Schoff; William T. Starmer; Shannon H. Buckley Luepold; John M. Belote; Scott Pitnick

Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male–male competition and female choice as discrete processes.


The American Naturalist | 2013

An Analytical Framework for Estimating Fertilization Bias and the Fertilization Set from Multiple Sperm-Storage Organs

Mollie K. Manier; Stefan Lüpold; Scott Pitnick; William T. Starmer

How sperm from competing males are used to fertilize eggs is poorly understood yet has important implications for postcopulatory sexual selection. Sperm may be used in direct proportion to their numerical representation within the fertilization set or with a bias toward one male over another. Previous theoretical treatments have assumed a single sperm-storage organ, but many taxa possess multiple organs or store sperm within multiple regions of the reproductive tract. In Drosophila, females store sperm in two distinct storage organ types: the seminal receptacle (SR) and the paired spermathecae. Here, we expand previous “raffle” models to describe “fertilization bias” independently for sperm within the SR and the spermathecae and estimate the fertilization set based on the relative contribution of sperm from the different sperm-storage organ types. We apply this model to three closely related species to reveal rapid divergence in the fertilization set and the potential for female sperm choice.


Evolution | 2013

EJACULATE QUALITY AND CONSTRAINTS IN RELATION TO SPERM COMPETITION LEVELS AMONG EUTHERIAN MAMMALS

Stefan Lüpold

The outcome of sperm competition is influenced by the relative quantity and quality of sperm among competing ejaculates. Whereas it is well established that individual ejaculate traits evolve rapidly under postcopulatory sexual selection, little is known about other factors that might influence the evolution of ejaculates. For example, the metabolic rate is likely to affect the sperm production rate and the cellular activity or metabolism of sperm, and it has recently been suggested to constrain the evolution of sperm length in large but not small mammals. I thus examined in eutherian mammals how ejaculate quality traits vary with one another and with testis mass, body size, and metabolism. I found all ejaculate traits to covary positively with one another and to increase with relative testis mass. When controlling for testis mass, small‐bodied species showed superior sperm quality (but not sperm number). Furthermore, sperm motility and viability were positively associated with the mass‐corrected metabolic rate, but the percentage of morphologically normal and acrosome‐intact sperm were not. These results indicate that body size and the energy budget may also influence the evolution of ejaculate quality, although these influences appear to vary among traits.

Collaboration


Dive into the Stefan Lüpold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Bo Liao

China West Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge