Stefan Müllegger
Johannes Kepler University of Linz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Müllegger.
Angewandte Chemie | 2016
Wolfgang Schöfberger; Felix Faschinger; Samir Chattopadhyay; Snehadri Bhakta; Biswajit Mondal; Johannes A. A. W. Elemans; Stefan Müllegger; Stefano Tebi; Reinhold Koch; Florian Klappenberger; Mateusz Paszkiewicz; Johannes V. Barth; E. Rauls; H. Aldahhak; W. G. Schmidt; Abhishek Dey
Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.
Journal of Physical Chemistry C | 2013
Stefan Müllegger; Mohammad Rashidi; Michael Fattinger; Reinhold Koch
Stable hydrocarbon radicals are utilized as spin standards and prototype metal-free molecular magnets able to withstand ambient conditions. Our study presents experimental results obtained with submolecular resolution by scanning tunneling microscopy and spectroscopy from monomers and dimers of stable hydrocarbon π radicals adsorbed on the Au(111) surface at 7–50 K. We provide conclusive evidence of the preservation of the radical spin-1/2 state, aiming to establish α,γ-bisdiphenylene-β-phenylallyl (BDPA) on Au(111) as a novel Kondo system, where the impurity spin is localized in a metal-free π molecular orbital of a neutral radical state in gas phase preserved on a metal support.
Journal of Physical Chemistry C | 2012
Stefan Müllegger; Mohammad Rashidi; Michael Fattinger; Reinhold Koch
Stable hydrocarbon radicals are able to withstand ambient conditions. Their combination with a supporting surface is a promising route toward novel functionalities or carbon-based magnetic systems. This will remain elusive until the interplay of radical–radical interactions and interface effects is fundamentally explored. We employ the tip of a low-temperature scanning tunneling microscope as a local probe in combination with density functional theory calculations to investigate with atomic precision the electronic and geometric effects of a weakly interacting metal support on an archetypal hydrocarbon radical model system, i.e., the exceptionally stable spin-1/2 radical α,γ-bisdiphenylene-β-phenylallyl (BDPA). Our study demonstrates the self-assembly of stable and regular one- and two-dimensional radical clusters on the Au(111) surface. Different types of geometric configurations are found to result from the interplay between the highly anisotropic radical–radical interactions and interface effects. We investigate the interaction mechanisms underlying the self-assembly processes and utilize the different configurations as a geometric design parameter to demonstrate energy shifts of up to 0.6 eV of the radicals’ frontier molecular orbitals responsible for their electronic, magnetic, and chemical properties.
Journal of the American Chemical Society | 2009
Stefan Müllegger; Wolfgang Schöfberger; Mohammad Rashidi; Lorenz Michael Reith; Reinhold Koch
Low-temperature scanning tunneling microscopy, a well-established technique for single-molecule investigations in an ultrahigh vacuum environment, has been used to study the electronic properties of Au(III) 5,10,15,20-tetraphenylporphyrin (AuTPP) molecules on Au(111) at the submolecular scale. AuTPP serves as a model system for chemotherapeutically relevant Au(III) porphyrins. For the first time, real-space images and local scanning tunneling spectroscopy data of the frontier molecular orbitals of AuTPP are presented. A comparison with results from density functional theory reveals significant deviations from gas-phase behavior due to a non-negligible molecule/substrate interaction. We identify the oxidation state of the central metal ion in the adsorbed AuTPP as Au(3+).
ACS Nano | 2011
Stefan Müllegger; Wolfgang Schöfberger; Mohammad Rashidi; Thomas Lengauer; Florian Klappenberger; Katharina Diller; Kamuran Kara; Johannes V. Barth; E. Rauls; W. G. Schmidt; Reinhold Koch
Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of the active center is indispensable. We present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support with potential impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy, we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal–ligand bonding interaction and completes the study by providing an illustrative electrostatic model relevant for ionic metalorganic agent molecules, in general.
Journal of the American Chemical Society | 2012
Mohammad Rashidi; Stefan Müllegger; Manuel Roithner; Wolfgang Schöfberger; Reinhold Koch
Corroles are versatile chemically active agents in solution. Expanding their applications toward surface-supported systems requires a fundamental knowledge of corrole–surface interactions. We employed the tip of a low-temperature scanning tunneling microscope as local probe to investigate at the single-molecule level the electronic and geometric properties of surface-supported free-base corrole molecules. To provide a suitable reference for other corrole-based systems on surfaces, we chose the archetypal 5,10,15-tris(pentafluorophenyl)corrole [H3(TpFPC)] as model system, weakly adsorbed on two surfaces with different interaction strengths. We demonstrate the nondissociative adsorption of H3(TpFPC) on pristine Au(111) and on an intermediate organic layer that provides sufficient electronic decoupling to investigate geometric and frontier orbital electronic properties of almost undisturbed H3(TpFPC) molecules at the submolecular level. We identify a deviating adsorption behavior of H3(TpFPC) compared to structurally similar porphyrins, characterized by a chiral pair of molecule–substrate configurations.
Nanotechnology | 2016
Stefano Tebi; H. Aldahhak; Giulia Serrano; Wolfgang Schöfberger; E. Rauls; W. G. Schmidt; Reinhold Koch; Stefan Müllegger
Non-trivial arrangement of molecules within a molecular network complicates structure determination due to interdigitation, partial overlap, or stacking. We demonstrate that combined imaging and lateral manipulation with a scanning tunneling microscope resolves the intricate structure of a molecular network in two-dimensions in a straightforward manner. The network, formed by a monolayer of 5,10,15-tris(pentafluorophenyl)-corrole molecules on Ag(111), is manipulated for the first time with single-molecule precision. Our results reveal a shingle-like packing of partially overlapping corrole molecules. Density functional theory calculations support our findings.
Journal of Physical Chemistry C | 2016
Giulia Serrano; Stefan Wiespointner-Baumgarthuber; Stefano Tebi; Svetlana Klyatskaya; Mario Ruben; Reinhold Koch; Stefan Müllegger
We report a low-temperature scanning tunneling microscopy and spectroscopy study of the structural and electronic properties of a bilayer of terbium double-decker (bis(phthalocyaninato)terbium(III), TbPc2) molecules on Au(111) at 5 K. The TbPc2 molecules are found to adsorb flat on top of a first compact TbPc2 monolayer on Au(111), forming a square-like packing similar to the underlying first layer. Their frontier-orbital electronic structure, measured by tunneling conductance spectroscopy, clearly differs from that of the underlying first monolayer. Our results of second-layer molecules indicate the absence of, both, hybrid molecule–substrate electronic states close to the Fermi level and a zero-bias Kondo resonance. We attribute these findings to a decreased electronic coupling with the Au(111) substrate.
ACS Nano | 2017
Stefano Tebi; Mateusz Paszkiewicz; H. Aldahhak; Francesco Allegretti; Sabrina Gonglach; Michael Haas; Mario Waser; Peter S. Deimel; Pablo Casado Aguilar; Yi-Qi Zhang; Anthoula C. Papageorgiou; David A. Duncan; Johannes V. Barth; W. G. Schmidt; Reinhold Koch; Uwe Gerstmann; E. Rauls; Florian Klappenberger; Wolfgang Schöfberger; Stefan Müllegger
Radical cyclization is among the most powerful and versatile reactions for constructing mono- and polycyclic systems, but has, to date, remained unexplored in the context of on-surface synthesis. We report the controlled on-surface synthesis of stable corrole radicals on Ag(111) via site-specific dehydrogenation of a pyrrole N-H bond in the 5,10,15-tris(pentafluoro-phenyl)-corrole triggered by annealing at 330 K under ultrahigh-vacuum conditions. We reveal a thermally induced regioselective cyclization reaction mediated by a radical cascade and resolve the reaction mechanism of the pertaining cyclodefluorination reaction at the single-molecule level. Via intramolecularly resolved probing of the radical-related Kondo signature, we achieve real space visualization of the distribution of the unpaired electron density over specific sites within the corrole radical. Annealing to 550 K initiates intermolecular coupling reactions, producing an extended π-conjugated corrole system.
Physical Review B | 2015
Stefan Müllegger; E. Rauls; Uwe Gerstmann; Stefano Tebi; Giulia Serrano; Stefan Wiespointner-Baumgarthuber; W. G. Schmidt; Reinhold Koch
Recent radio frequency scanning tunneling spectroscopy (rf-STS) experiments have demonstrated nuclear and electron spin excitations up to