Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan N. Constantinescu is active.

Publication


Featured researches published by Stefan N. Constantinescu.


Nature | 2005

A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera

Chloe James; Valérie Ugo; Jean-Pierre Le Couedic; Judith Staerk; François Delhommeau; Catherine Lacout; Loïc Garçon; Hana Raslova; Roland Berger; Annelise Bennaceur-Griscelli; Jean Luc Villeval; Stefan N. Constantinescu; Nicole Casadevall; William Vainchenker

Myeloproliferative disorders are clonal haematopoietic stem cell malignancies characterized by independency or hypersensitivity of haematopoietic progenitors to numerous cytokines. The molecular basis of most myeloproliferative disorders is unknown. On the basis of the model of chronic myeloid leukaemia, it is expected that a constitutive tyrosine kinase activity could be at the origin of these diseases. Polycythaemia vera is an acquired myeloproliferative disorder, characterized by the presence of polycythaemia diversely associated with thrombocytosis, leukocytosis and splenomegaly. Polycythaemia vera progenitors are hypersensitive to erythropoietin and other cytokines. Here, we describe a clonal and recurrent mutation in the JH2 pseudo-kinase domain of the Janus kinase 2 (JAK2) gene in most (> 80%) polycythaemia vera patients. The mutation, a valine-to-phenylalanine substitution at amino acid position 617, leads to constitutive tyrosine phosphorylation activity that promotes cytokine hypersensitivity and induces erythrocytosis in a mouse model. As this mutation is also found in other myeloproliferative disorders, this unique mutation will permit a new molecular classification of these disorders and novel therapeutical approaches.


Blood | 2011

New mutations and pathogenesis of myeloproliferative neoplasms

William Vainchenker; François Delhommeau; Stefan N. Constantinescu; Olivier A. Bernard

Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by excessive production of mature blood cells. In the majority of classic MPN--polycythemia vera, essential thrombocythemia, and primitive myelofibrosis--driver oncogenic mutations affecting Janus kinase 2 (JAK2) or MPL lead to constitutive activation of cytokine-regulated intracellular signaling pathways. LNK, c-CBL, or SOCSs (all negative regulators of signaling pathways), although infrequently targeted, may either drive the disease or synergize with JAK2 and MPL mutations. IZF1 deletions or TP53 mutations are mainly found at transformation phases and are present at greater frequency than in de novo acute myeloid leukemias. Loss-of-function mutations in 3 genes involved in epigenetic regulation, TET2, ASXL1, and EZH2, may be early events preceding JAK2V617F but may also occur late during disease progression. They are more frequently observed in PMF than PV and ET and are also present in other types of malignant myeloid diseases. A likely hypothesis is that they facilitate clonal selection, allowing the dominance of the JAK2V617F subclone during the chronic phase and, together with cooperating mutations, promote blast crisis. Their precise roles in hematopoiesis and in the pathogenesis of MPN, as well as their prognostic impact and potential as a therapeutic target, are currently under investigation.


Journal of Experimental Medicine | 2008

Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia

Elisabetta Flex; Valentina Petrangeli; Lorenzo Stella; Sabina Chiaretti; Tekla Hornakova; Laurent Knoops; Cristina Ariola; Valentina Fodale; Emmanuelle Clappier; Francesca Paoloni; Simone Martinelli; Alessandra Fragale; Massimo Sanchez; Simona Tavolaro; Monica Messina; Giovanni Cazzaniga; Andrea Camera; Giovanni Pizzolo; Assunta Tornesello; Marco Vignetti; Angela Battistini; Hélène Cavé; Bruce D. Gelb; Jean-Christophe Renauld; Andrea Biondi; Stefan N. Constantinescu; Robin Foà; Marco Tartaglia

Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. We report that somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis. All mutations were missense, and some were predicted to destabilize interdomain interactions controlling the activity of the kinase. Three mutations that were studied promoted JAK1 gain of function and conferred interleukin (IL)-3–independent growth in Ba/F3 cells and/or IL-9–independent resistance to dexamethasone-induced apoptosis in T cell lymphoma BW5147 cells. Such effects were associated with variably enhanced activation of multiple downstream signaling pathways. Leukemic cells with mutated JAK1 alleles shared a gene expression signature characterized by transcriptional up-regulation of genes positively controlled by JAK signaling. Our findings implicate dysregulated JAK1 function in ALL, particularly of T cell origin, and point to this kinase as a target for the development of novel antileukemic drugs.


Molecular Cell | 2001

The N-terminal domain of Janus kinase 2 is required for golgi processing and cell surface expression of erythropoietin receptor

Lily Jun Shen Huang; Stefan N. Constantinescu; Harvey F. Lodish

We show that Janus kinase 2 (JAK2), and more specifically just its intact N-terminal domain, binds to the erythropoietin receptor (EpoR) in the endoplasmic reticulum and promotes its cell surface expression. This interaction is specific as JAK1 has no effect. Residues 32 to 58 of the JAK2 JH7 domain are required for EpoR surface expression. Alanine scanning mutagenesis of the EpoR membrane proximal region reveals two modes of EpoR-JAK2 interaction. A continuous block of EpoR residues is required for functional, ligand-independent binding to JAK2 and cell surface receptor expression, whereas four specific residues are essential in switching on prebound JAK2 after ligand binding. Thus, in addition to its kinase activity required for cytokine receptor signaling, JAK is also an essential subunit required for surface expression of cytokine receptors.


Genome Biology | 2010

NetPath: a public resource of curated signal transduction pathways.

Kumaran Kandasamy; S. Sujatha Mohan; Rajesh Raju; Shivakumar Keerthikumar; Ghantasala S. Sameer Kumar; Abhilash Venugopal; Deepthi Telikicherla; Daniel J. Navarro; Suresh Mathivanan; Christian Pecquet; Sashi Kanth Gollapudi; Sudhir Gopal Tattikota; Shyam Mohan; Hariprasad Padhukasahasram; Yashwanth Subbannayya; Renu Goel; Harrys K.C. Jacob; Jun Zhong; Raja Sekhar; Vishalakshi Nanjappa; Lavanya Balakrishnan; Roopashree Subbaiah; Yl Ramachandra; B. Abdul Rahiman; T. S. Keshava Prasad; Jian Xin Lin; Jon C. D. Houtman; Stephen Desiderio; Jean-Christophe Renauld; Stefan N. Constantinescu

We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles. We anticipate NetPath to become a consolidated resource for human signaling pathways that should enable systems biology approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain

Stefan N. Constantinescu; Tzvia Keren; Merav Socolovsky; Hyung-song Nam; Yoav I. Henis; Harvey F. Lodish

Binding of erythropoietin (Epo) to the Epo receptor (EpoR) is crucial for production of mature red cells. Although it is well established that the Epo-bound EpoR is a dimer, it is not clear whether, in the absence of ligand, the intact EpoR is a monomer or oligomer. Using antibody-mediated immunofluorescence copatching (oligomerizing) of epitope-tagged receptors at the surface of live cells, we show herein that a major fraction of the full-length murine EpoR exists as preformed dimers/oligomers in BOSC cells, which are human embryo kidney 293T-derived cells. This observed oligomerization is specific because, under the same conditions, epitope-tagged EpoR did not oligomerize with several other tagged receptors (thrombopoietin receptor, transforming growth factor β receptor type II, or prolactin receptor). Strikingly, the EpoR transmembrane (TM) domain but not the extracellular or intracellular domains enabled the prolactin receptor to copatch with EpoR. Preformed EpoR oligomers are not constitutively active and Epo binding was required to induce signaling. In contrast to tyrosine kinase receptors (e.g., insulin receptor), which cannot signal when their TM domain is replaced by the strongly dimerizing TM domain of glycophorin A, the EpoR could tolerate the replacement of its TM domain with that of glycophorin A and retained signaling. We propose a model in which TM domain-induced dimerization maintains unliganded EpoR in an inactive state that can readily be switched to an active state by physiologic levels of Epo.


Trends in Endocrinology and Metabolism | 1999

The Erythropoietin Receptor: Structure, Activation and Intracellular Signal Transduction

Stefan N. Constantinescu; Saghi Ghaffari; Harvey F. Lodish

Erythropoietin (Epo) and its receptor (EpoR) are essential for proliferation, differentiation and survival of erythroid progenitors. Here, we review several mechanisms by which the EpoR can be activated. We also describe the many intracellular signal transduction pathways activated by the EpoR. None are unique to the EpoR and mutant receptors able to activate only a subset of these pathways can support erythropoiesis in EpoR-/- fetal liver cells. Furthermore, normal erythroid differentiation occurs when the EpoR is replaced by the prolactin receptor or the myeloid oncoprotein Bcr-abl. Epo and probably other growth factors are required merely to ensure the survival and proliferation of already committed progenitors.


Oncogene | 2013

JAK/STAT signaling in hematological malignancies

William Vainchenker; Stefan N. Constantinescu

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is central to signaling by cytokine receptors, a superfamily of more than 30 transmembrane proteins that recognize specific cytokines, and is critical in blood formation and immune response. Many of those receptors transmit anti-apoptotic, proliferative and differentiation signals, and their expression and functions are critical for the formation of blood lineages. Several cancers, including blood malignancies, have been associated with constitutive activation of members of the STAT family, which normally require JAK-mediated tyrosine phosphorylation for transcriptional activation. More recently, human myeloproliferative neoplasms were discovered to be associated with a unique acquired somatic mutation in JAK2 (JAK2 V617F), rare exon 12 JAK2 mutations, or thrombopoietin receptor mutations that constitutively activate wild-type JAK2. Prompted by these observations, many studies have explored the possibility that JAKs, cytokine receptors, or other components of the JAK/STAT pathway are mutated or upregulated in several hematological malignancies. This has been observed in certain pediatric acute lymphoblastic leukemias and adult T-cell lymphoblastic leukemias, and overexpression of JAK2 seems to be important in Hodgkin lymphoma. Here we discuss the nature and respective contribution of mutations dysregulating the JAK/STAT pathway in hematological malignancies and present examples in which such mutations drive the disease, contribute to the phenotype, or provide a survival and proliferative advantage. JAK inhibitors are making their way into the therapeutic arsenal (for example, in myelofibrosis), and we discuss the possibility that other hematological diseases might benefit from treatment with these inhibitors in combination with other agents.


Molecular Cell | 2003

Active and Inactive Orientations of the Transmembrane and Cytosolic Domains of the Erythropoietin Receptor Dimer

Nadine Seubert; Yohan Royer; Judith Staerk; Katharina F. Kubatzky; Virginie Moucadel; Shyam Krishnakumar; Steven O. Smith; Stefan N. Constantinescu

Binding of erythropoietin to the erythropoietin receptor (EpoR) extracellular domain orients the transmembrane (TM) and cytosolic regions of the receptor dimer into an unknown activated conformation. By replacing the EpoR extracellular domain with a dimeric coiled coil, we engineered TM EpoR fusion proteins where the helical TM domains were constrained into seven possible relative orientations. We identify one dimeric TM conformation that imparts full activity to the cytosolic domain of the receptor and signals via JAK2, STAT proteins, and MAP kinase, one partially active orientation that preferentially activates MAP kinase, and one conformation corresponding to the inactive receptor. The active and inactive conformations were independently identified by computational searches for low-energy TM dimeric structures. We propose a specific EpoR-activated interface and suggest its use for structural and signaling studies.


Molecular Cell | 2001

The Erythropoietin Receptor Cytosolic Juxtamembrane Domain Contains an Essential, Precisely Oriented, Hydrophobic Motif

Stefan N. Constantinescu; Lily Jun Shen Huang; Hyung song Nam; Harvey F. Lodish

We report that the erythropoietin receptor cytosolic juxtamembrane region is conformationally rigid and contains a hydrophobic motif, composed of residues L253, I257, and W258, that is crucial for Janus kinase 2 (JAK2) activation and receptor signaling. Alanine insertion mutagenesis shows that the orientation of this motif and not its distance from the membrane bilayer is critical. Intragenic complementation studies suggest that L253 is contained within an alpha helix functionally continuous to the transmembrane alpha helix. The alpha-helical orientation of L53 is required not for JAK2 activation but for activated JAK2 to induce phosphorylation of the erythropoietin receptor. This motif is highly conserved among cytokine receptors and couples ligand-induced conformational changes in the receptor to intracellular activation of JAK2.

Collaboration


Dive into the Stefan N. Constantinescu's collaboration.

Top Co-Authors

Avatar

Christian Pecquet

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Kienlen-Campard

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jean-Noël Octave

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Defour

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Jean-Christophe Renauld

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Judith Staerk

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Laurent Knoops

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Emilie Leroy

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Alexandra Dusa

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge