Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan N. Tulich is active.

Publication


Featured researches published by Stefan N. Tulich.


Monthly Weather Review | 2014

A Comparison of OLR and Circulation-Based Indices for Tracking the MJO

George N. Kiladis; Juliana Dias; Katherine H. Straub; Matthew C. Wheeler; Stefan N. Tulich; Kazuyoshi Kikuchi; Klaus M. Weickmann; Michael J. Ventrice

AbstractTwo univariate indices of the Madden–Julian oscillation (MJO) based on outgoing longwave radiation (OLR) are developed to track the convective component of the MJO while taking into account the seasonal cycle. These are compared with the all-season Real-time Multivariate MJO (RMM) index of Wheeler and Hendon derived from a multivariate EOF of circulation and OLR. The gross features of the OLR and circulation of composite MJOs are similar regardless of the index, although RMM is characterized by stronger circulation. Diversity in the amplitude and phase of individual MJO events between the indices is much more evident; this is demonstrated using examples from the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign and the Year of Tropical Convection (YOTC) virtual campaign. The use of different indices can lead to quite disparate conclusions concerning MJO timing and strength, and even as to whether or not an MJO has occurred. A disadvantage of using daily OLR as an EOF basis is that ...


Journal of the Atmospheric Sciences | 2007

Vertical-Mode and Cloud Decomposition of Large-Scale Convectively Coupled Gravity Waves in a Two-Dimensional Cloud-Resolving Model

Stefan N. Tulich; David A. Randall; Brian E. Mapes

This paper describes an analysis of large-scale [O(1000 km)] convectively coupled gravity waves simulated using a two-dimensional cloud-resolving model. The waves develop spontaneously under uniform radiative cooling and approximately zero-mean-flow conditions, with wavenumber 2 of the domain appearing most prominently and right-moving components dominating over left-moving components for random reasons. The analysis discretizes the model output in two ways. First, a vertical-mode transform projects profiles of winds, temperature, and heating onto the vertical modes of the model’s base-state atmosphere. Second, a cloud-partitioning algorithm sorts sufficiently cloudy grid columns into three categories: shallow convective, deep convective, and stratiform anvil. Results show that much of the tilted structures of the waves can be captured by just two main vertical spectral “bands,” each consisting of a pair of vertical modes. The “slow” modes have propagation speeds of 16 and 18 m s � 1 (and roughly a full-wavelength vertical structure through the troposphere), while the “fast” modes have speeds of 35 and 45 m s � 1 (and roughly a half-wavelength structure). Deep convection anomalies in the waves are more or less in phase with the low-level cold temperature anomalies of the slow modes and in quadrature with those of the fast modes. Owing to the characteristic life cycle of deep convective cloud systems, shallow convective heating peaks � 2 h prior to maximum deep convective heating, while stratiform heating peaks � 3 h after. The onset of deep convection in the waves is preceded by a gradual deepening of shallow convection lasting a period of many hours. Results of this study are in broad agreement with simple two-mode models of unstable large-scale wave growth, under the name “stratiform instability.” Differences here are that 1) the key dynamical modes have speeds in the range 16–18 m s � 1 , rather than 23–25 m s � 1 (owing to a shallower depth of imposed radiative cooling), and 2) deep convective heating, as well as stratiform heating, is essential for the generation and maintenance of the slow modes.


Journal of the Atmospheric Sciences | 2011

Clouds Associated with the Madden–Julian Oscillation: A New Perspective from CloudSat

Emily M. Riley; Brian E. Mapes; Stefan N. Tulich

AbstractThe evolution of total cloud cover and cloud types is composited across the Madden–Julian oscillation (MJO) using CloudSat data for June 2006–May 2010. Two approaches are used to define MJO phases: 1) the local phase is determined at each longitude and time from filtered outgoing longwave radiation, and 2) the global phase is defined using a popular real-time multivariate MJO (RMM) index, which assigns the tropics to an MJO phase each day.In terms of local phase, CloudSat results show a familiar evolution of cloud type predominance: in the growing stages shallow clouds coexist with deep, intense, but narrow convective systems. Widespread cloud coverage and rainfall appear during the active phases, becoming more anvil dominated with time, and finally suppressed conditions return. Results are compared to the convectively coupled Kelvin wave, which has a similar life cycle to the MJO. Convection in the MJO tends to be modulated more by moisture variations compared to the Kelvin wave.In terms of globa...


Journal of the Atmospheric Sciences | 2010

Transient Environmental Sensitivities of Explicitly Simulated Tropical Convection

Stefan N. Tulich; Brian E. Mapes

Abstract A three-dimensional cloud-resolving model, maintained in a statistically steady convecting state by tropics-like forcing, is subjected to sudden (10 min) stimuli consisting of horizontally homogeneous temperature and/or moisture sources with various profiles. Ensembles of simulations are used to increase the statistical robustness of the results and to assess the deterministic nature of the model response for domain sizes near contemporary global model resolution. The response to middle- and upper-tropospheric perturbations is predominantly local in the vertical: convection damps the imposed stimulus over a few hours. Low-level perturbations are similarly damped, but also produce a vertically nonlocal response: enhancement or suppression of new deep convective clouds extending above the perturbed level. Experiments show that the “effective inhibition layer” for deep convection is about 4 km deep, far deeper than traditional convective inhibition defined for undilute lifted parcels. Both the local...


Journal of the Atmospheric Sciences | 2012

Squall Lines and Convectively Coupled Gravity Waves in the Tropics: Why Do Most Cloud Systems Propagate Westward?

Stefan N. Tulich; George N. Kiladis

AbstractThe coupling between tropical convection and zonally propagating gravity waves is assessed through Fourier analysis of high-resolution (3-hourly, 0.5°) satellite rainfall data. Results show the familiar enhancement in power along the dispersion curves of equatorially trapped inertia–gravity waves with implied equivalent depths in the range 15–40 m (i.e., pure gravity wave speeds in the range 12–20 m s−1). Here, such wave signals are seen to extend all the way down to zonal wavelengths of around 500 km and periods of around 8 h, suggesting that convection–wave coupling may be important even in the context of mesoscale squall lines. This idea is supported by an objective wave-tracking algorithm, which shows that many previously studied squall lines, in addition to “2-day waves,” can be classified as convectively coupled inertia–gravity waves with the dispersion properties of shallow-water gravity waves. Most of these disturbances propagate westward at speeds faster than the background flow. To under...


Journal of the Atmospheric Sciences | 2001

Some Simple Simulations of Thunderstorm Outflows

Patrick T. Haertel; Richard H. Johnson; Stefan N. Tulich

Three idealized simulations of thunderstorm outflows are presented. Each outflow is a response to an instantaneous low-level cooling. The vertical structures of the coolings differ as do the environments in which the outflows form, and consequently the dynamics of the outflows differ. One outflow is a gravity current, another is a gravity wave, and the third comprises both a gravity current and a gravity wave. The horizontal transport of mass is important for the advance of the gravity-current outflow, but not for the gravity wave outflow, and it is suggested that this is the defining dynamical distinction between the two outflows. The simulations are compared to observations and it is suggested that some outflows previously characterized as gravity currents may better fit the gravity wave or gravity current/wave archetypes. It is also noted that the gravity wave component of an outflow may be generated directly by low-level cooling in addition to the commonly suggested mechanism of the interaction of a gravity current with a stable layer.


Journal of the Atmospheric Sciences | 2012

An Object-Based Approach to Assessing the Organization of Tropical Convection

Juliana Dias; Stefan N. Tulich; George N. Kiladis

AbstractThe organization of tropical convection is assessed through an object-based analysis of satellite brightness temperature data Tb, a proxy for convective activity. The analysis involves the detection of contiguous cloud regions (CCRs) in the three-dimensional space of latitude, longitude, and time where Tb falls below a given threshold. A range of thresholds is considered and only CCRs that satisfy a minimum size constraint are retained in the analysis. Various statistical properties of CCRs are documented including their zonal speed of propagation, which is estimated using a Radon transformation technique. Consistent with previous studies, a majority of CCRs are found to propagate westward, typically at speeds of around 15 m s−1, regardless of underlying Tb threshold. Most of these zonally propagating CCRs have lifetimes less than 2 days and zonal widths less than 800 km, implying aggregation of just a few individual mesoscale convective systems. This object-based perspective is somewhat different...


Journal of Advances in Modeling Earth Systems | 2015

A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP‐WRF)

Stefan N. Tulich

This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a “superparameterization” of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via “cumulus friction.” This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.


Journal of Advances in Modeling Earth Systems | 2016

ITCZ structure as determined by parameterized versus explicit convection in aquachannel and aquapatch simulations

David S. Nolan; Stefan N. Tulich; Joaquín E. Blanco

Numerous studies using both global and regional models of the atmosphere have found daunting sensitivities of the structure and dynamics of the intertropical convergence zone (ITCZ) to the representations of unresolved processes, particularly the convective parameterization (CP). Evaluations of these results by comparison to high-resolution simulations with explicit convection have been rather limited, due to the large computational burden of using grid spacings less than 10 km over large domains representative of the Earth’s tropics. This study introduces a framework that allows the use of cloud-resolving grid spacings over the tropics and larger spacings over remainder of the domain. The Weather Research and Forecasting (WRF) model is used in an ‘‘aquachannel’’ beta-plane configuration, zonally periodic with length equal to that of the real equator. This model reproduces the general circulation and eddy statistics of similarly configured aquaplanet models. A channel shortened to one third the length of the equator (the ‘‘aquapatch’’) also reproduces the zonal-mean circulations and eddies. Finally, nested grids embedded in the aquapatch are used to simulate tropical convection with 5.15 km resolution. The nested 5.15 km simulations produce broader and lighter rainfall distributions, making single ITCZs wider and smoothing out double ITCZ structures. They also show quite different rainfall production rates for atmospheric parameters such as convective available potential energy (CAPE) and column relative humidity (CRH). The apparent reason for these differences is that the higher resolution allows for the representation of squall lines and associated cold pools that propagate meridionally, redistributing rainfall away from the ITCZ.


Dynamics of Atmospheres and Oceans | 2006

The mesoscale convection life cycle: building block or prototype for large-scale tropical waves?

Brian E. Mapes; Stefan N. Tulich; Jia-Lin Lin; Paquita Zuidema

Collaboration


Dive into the Stefan N. Tulich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia-Lin Lin

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus M. Weickmann

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge