Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Paulus is active.

Publication


Featured researches published by Stefan Paulus.


Sensors | 2014

Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping

Stefan Paulus; Jan Behmann; Anne-Katrin Mahlein; Lutz Plümer; Heiner Kuhlmann

Over the last few years, 3D imaging of plant geometry has become of significant importance for phenotyping and plant breeding. Several sensing techniques, like 3D reconstruction from multiple images and laser scanning, are the methods of choice in different research projects. The use of RGBcameras for 3D reconstruction requires a significant amount of post-processing, whereas in this context, laser scanning needs huge investment costs. The aim of the present study is a comparison between two current 3D imaging low-cost systems and a high precision close-up laser scanner as a reference method. As low-cost systems, the David laser scanning system and the Microsoft Kinect Device were used. The 3D measuring accuracy of both low-cost sensors was estimated based on the deviations of test specimens. Parameters extracted from the volumetric shape of sugar beet taproots, the leaves of sugar beets and the shape of wheat ears were evaluated. These parameters are compared regarding accuracy and correlation to reference measurements. The evaluation scenarios were chosen with respect to recorded plant parameters in current phenotyping projects. In the present study, low-cost 3D imaging devices have been shown to be highly reliable for the demands of plant phenotyping, with the potential to be implemented in automated application procedures, while saving acquisition costs. Our study confirms that a carefully selected low-cost sensor is able to replace an expensive laser scanner in many plant phenotyping scenarios.


BMC Bioinformatics | 2013

Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.

Stefan Paulus; Jan Dupuis; Anne-Katrin Mahlein; Heiner Kuhlmann

BackgroundLaserscanning recently has become a powerful and common method for plant parameterization and plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation, segmentation and classification of single plants by a fully automated system. In this report, we introduce a technique for automated classification of point clouds of plants and present the applicability for plant parameterization.ResultsA surface feature histogram based approach from the field of robotics was adapted to close-up laserscans of plants. Local geometric point features describe class characteristics, which were used to distinguish among different plant organs. This approach has been proven and tested on several plant species. Grapevine stems and leaves were classified with an accuracy of up to 98%. The proposed method was successfully transferred to 3D-laserscans of wheat plants for yield estimation. Wheat ears were separated with an accuracy of 96% from other plant organs. Subsequently, the ear volume was calculated and correlated to the ear weight, the kernel weights and the number of kernels. Furthermore the impact of the data resolution was evaluated considering point to point distances between 0.3 and 4.0 mm with respect to the classification accuracy.ConclusionWe introduced an approach using surface feature histograms for automated plant organ parameterization. Highly reliable classification results of about 96% for the separation of grapevine and wheat organs have been obtained. This approach was found to be independent of the point to point distance and applicable to multiple plant species. Its reliability, flexibility and its high order of automation make this method well suited for the demands of high throughput phenotyping.Highlights• Automatic classification of plant organs using geometrical surface information• Transfer of analysis methods for low resolution point clouds to close-up laser measurements of plants• Analysis of 3D-data requirements for automated plant organ classification


Sensors | 2014

Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

Stefan Paulus; Jan Dupuis; Sebastian Riedel; Heiner Kuhlmann

Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0.99 for the leaf area and R2 = 0.98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored.


Sensors | 2015

Accuracy Analysis of a Multi-View Stereo Approach for Phenotyping of Tomato Plants at the Organ Level

Johann Christian Rose; Stefan Paulus; Heiner Kuhlmann

Accessing a plants 3D geometry has become of significant importance for phenotyping during the last few years. Close-up laser scanning is an established method to acquire 3D plant shapes in real time with high detail, but it is stationary and has high investment costs. 3D reconstruction from images using structure from motion (SfM) and multi-view stereo (MVS) is a flexible cost-effective method, but requires post-processing procedures. The aim of this study is to evaluate the potential measuring accuracy of an SfM- and MVS-based photogrammetric method for the task of organ-level plant phenotyping. For this, reference data are provided by a high-accuracy close-up laser scanner. Using both methods, point clouds of several tomato plants were reconstructed at six following days. The parameters leaf area, main stem height and convex hull of the complete plant were extracted from the 3D point clouds and compared to the reference data regarding accuracy and correlation. These parameters were chosen regarding the demands of current phenotyping scenarios. The study shows that the photogrammetric approach is highly suitable for the presented monitoring scenario, yielding high correlations to the reference measurements. This cost-effective 3D reconstruction method depicts an alternative to an expensive laser scanner in the studied scenarios with potential for automated procedures.


BMC Bioinformatics | 2015

Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.

Mirwaes Wahabzada; Stefan Paulus; Kristian Kersting; Anne-Katrin Mahlein

BackgroundPlant organ segmentation from 3D point clouds is a relevant task for plant phenotyping and plant growth observation. Automated solutions are required to increase the efficiency of recent high-throughput plant phenotyping pipelines. However, plant geometrical properties vary with time, among observation scales and different plant types. The main objective of the present research is to develop a fully automated, fast and reliable data driven approach for plant organ segmentation.ResultsThe automated segmentation of plant organs using unsupervised, clustering methods is crucial in cases where the goal is to get fast insights into the data or no labeled data is available or costly to achieve. For this we propose and compare data driven approaches that are easy-to-realize and make the use of standard algorithms possible. Since normalized histograms, acquired from 3D point clouds, can be seen as samples from a probability simplex, we propose to map the data from the simplex space into Euclidean space using Aitchisons log ratio transformation, or into the positive quadrant of the unit sphere using square root transformation. This, in turn, paves the way to a wide range of commonly used analysis techniques that are based on measuring the similarities between data points using Euclidean distance. We investigate the performance of the resulting approaches in the practical context of grouping 3D point clouds and demonstrate empirically that they lead to clustering results with high accuracy for monocotyledonous and dicotyledonous plant species with diverse shoot architecture.ConclusionAn automated segmentation of 3D point clouds is demonstrated in the present work. Within seconds first insights into plant data can be deviated – even from non-labelled data. This approach is applicable to different plant species with high accuracy. The analysis cascade can be implemented in future high-throughput phenotyping scenarios and will support the evaluation of the performance of different plant genotypes exposed to stress or in different environmental scenarios.


machine vision applications | 2016

Generation and application of hyperspectral 3D plant models: methods and challenges

Jan Behmann; Anne-Katrin Mahlein; Stefan Paulus; Jan Dupuis; Heiner Kuhlmann; Erich-Christian Oerke; Lutz Plümer

Hyperspectral imaging sensors have been introduced for measuring the health status of plants. Recently, they also have been used for close-range sensing of plant canopies with a highly complex architecture. However, the complex geometry of plants and their interaction with the illumination setting severely affect the spectral information obtained. Furthermore, the spatial component of analysis results gain in importance as higher plants are represented by multiple plant organs as leaves, stems and seed pods. The combination of hyperspectral images and 3D point clouds is a promising approach to face these problems. We present the generation and application of hyperspectral 3D plant models as a new, interesting application field for computer vision with a variety of challenging tasks. We sum up a geometric calibration method for hyperspectral pushbroom cameras using a reference object for the combination of spectral and spatial information. Furthermore, we show exemplarily new calibration and analysis methods enabled by the hyperspectral 3D models in an experiment with sugar beet plants. An improved normalization, a comparison of image and 3D analysis and the density estimation of infected surface points underline some of the new capabilities gained using this new data type. Based on such hyperspectral 3D models the effects of plant geometry and sensor configuration can be quantified and modeled. In future, reflectance models can be used to remove or weaken the geometry-related effects in hyperspectral images and, therefore, have the potential to improve automated plant phenotyping significantly.


Sensors | 2014

Limits of Active Laser Triangulation as an Instrument for High Precision Plant Imaging

Stefan Paulus; Thomas Eichert; Heiner E. Goldbach; Heiner Kuhlmann

Laser scanning is a non-invasive method for collecting and parameterizing 3D data of well reflecting objects. These systems have been used for 3D imaging of plant growth and structure analysis. A prerequisite is that the recorded signals originate from the true plant surface. In this paper we studied the effects of species, leaf chlorophyll content and sensor settings on the suitability and accuracy of a commercial 660 nm active laser triangulation scanning device. We found that surface images of Ficus benjamina leaves were inaccurate at low chlorophyll concentrations and a long sensor exposure time. Imaging of the rough waxy leaf surface of leek (Allium porrum) was possible using very low exposure times, whereas at higher exposure times penetration and multiple refraction prevented the correct imaging of the surface. A comparison of scans with varying exposure time enabled the target-oriented analysis to identify chlorotic, necrotic and healthy leaf areas or mildew infestations. We found plant properties and sensor settings to have a strong influence on the accuracy of measurements. These interactions have to be further elucidated before laser imaging of plants is possible with the high accuracy required for e.g., the observation of plant growth or reactions to water stress.


Sensors | 2014

A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors

Jan Dupuis; Stefan Paulus; Jan Behmann; Lutz Plümer; Heiner Kuhlmann

The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.


european conference on computer vision | 2014

Generation and application of hyperspectral 3D plant models

Jan Behmann; Anne-Katrin Mahlein; Stefan Paulus; Heiner Kuhlmann; Erich-Christian Oerke; Lutz Plümer

Hyperspectral imaging sensors have been introduced for measuring the health status of plants. Recently, they have been also used for close-range sensing of plant canopies with a more complex architecture. The complex geometry of plants and their interaction with the illumination scenario severely affect the spectral information obtained. The combination of hyperspectral images and 3D point clouds are a promising approach to face this problem. Based on such hyperspectral 3D models the effects of plant geometry and sensor configuration can be quantified an modeled. Reflectance models can be used to remove or weaken the geometry-related effects in hyperspectral images and, therefore, have the potential potential to improve automated phenotyping significantly.


Biosystems Engineering | 2014

High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants

Stefan Paulus; Henrik Schumann; Heiner Kuhlmann; Jens Léon

Collaboration


Dive into the Stefan Paulus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristian Kersting

Technical University of Dortmund

View shared research outputs
Researchain Logo
Decentralizing Knowledge