Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefán R. Jónsson is active.

Publication


Featured researches published by Stefán R. Jónsson.


Journal of Virology | 2009

Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins

Rebecca S. LaRue; Valgerdur Andrésdóttir; Yannick Blanchard; Silvestro G. Conticello; David Derse; Michael Emerman; Warner C. Greene; Stefán R. Jónsson; Nathaniel R. Landau; Martin Löchelt; Harmit S. Malik; Michael H. Malim; Carsten Münk; Stephen J. O'Brien; Vinay K. Pathak; Klaus Strebel; Simon Wain-Hobson; Xiao Fang Yu; Naoya Yuhki; Reuben S. Harris

Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins Rebecca S. LaRue, Valgerdur Andresdottir, Yannick Blanchard, Silvestro G. Conticello, David Derse, Michael Emerman, Warner C. Greene, Stefan R. Jonsson, Nathaniel R. Landau, Martin Lochelt, Harmit S. Malik, Michael H. Malim, Carsten Munk, Stephen J. O’Brien, Vinay K. Pathak, Klaus Strebel, Simon Wain-Hobson, Xiao-Fang Yu, Naoya Yuhki, and Reuben S. Harris*


BMC Molecular Biology | 2008

The Artiodactyl APOBEC3 Innate Immune Repertoire Shows Evidence for a Multi-Functional Domain Organization that Existed in the Ancestor of Placental Mammals

Rebecca S. LaRue; Stefán R. Jónsson; Kevin A. T. Silverstein; Mathieu Lajoie; Denis Bertrand; Nadia El-Mabrouk; Isidro Hötzel; Valgerdur Andrésdóttir; T. P. L. Smith; Reuben S. Harris

BackgroundAPOBEC3 (A3) proteins deaminate DNA cytosines and block the replication of retroviruses and retrotransposons. Each A3 gene encodes a protein with one or two conserved zinc-coordinating motifs (Z1, Z2 or Z3). The presence of one A3 gene in mice (Z2–Z3) and seven in humans, A3A-H (Z1a, Z2a-Z1b, Z2b, Z2c-Z2d, Z2e-Z2f, Z2g-Z1c, Z3), suggests extraordinary evolutionary flexibility. To gain insights into the mechanism and timing of A3 gene expansion and into the functional modularity of these genes, we analyzed the genomic sequences, expressed cDNAs and activities of the full A3 repertoire of three artiodactyl lineages: sheep, cattle and pigs.ResultsSheep and cattle have three A3 genes, A3Z1, A3Z2 and A3Z3, whereas pigs only have two, A3Z2 and A3Z3. A comparison between domestic and wild pigs indicated that A3Z1 was deleted in the pig lineage. In all three species, read-through transcription and alternative splicing also produced a catalytically active double domain A3Z2-Z3 protein that had a distinct cytoplasmic localization. Thus, the three A3 genes of sheep and cattle encode four conserved and active proteins. These data, together with phylogenetic analyses, indicated that a similar, functionally modular A3 repertoire existed in the common ancestor of artiodactyls and primates (i.e., the ancestor of placental mammals). This mammalian ancestor therefore possessed the minimal A3 gene set, Z1-Z2-Z3, required to evolve through a remarkable series of eight recombination events into the present day eleven Z domain human repertoire.ConclusionThe dynamic recombination-filled history of the mammalian A3 genes is consistent with the modular nature of the locus and a model in which most of these events (especially the expansions) were selected by ancient pathogenic retrovirus infections.


Journal of Virology | 2010

Lentiviral Vif Degrades the APOBEC3Z3/APOBEC3H Protein of Its Mammalian Host and Is Capable of Cross-Species Activity

Rebecca S. LaRue; Joy Lengyel; Stefán R. Jónsson; Valgerdur Andrésdóttir; Reuben S. Harris

ABSTRACT All lentiviruses except equine infectious anemia virus (EIAV) use the small accessory protein Vif to counteract the restriction activity of the relevant APOBEC3 (A3) proteins of their host species. Prior studies have suggested that the Vif-A3 interaction is species specific. Here, using the APOBEC3H (Z3)-type proteins from five distinct mammals, we report that this is generally not the case: some lentiviral Vif proteins are capable of triggering the degradation of both the A3Z3-type protein of their normal host species and those of several other mammals. For instance, SIVmac Vif can mediate the degradation of the human, macaque, and cow A3Z3-type proteins but not of the sheep or cat A3Z3-type proteins. Maedi-visna virus (MVV) Vif is similarly promiscuous, degrading not only sheep A3Z3 but also the A3Z3-type proteins of humans, macaques, cows, and cats. In contrast to the neutralization capacity of these Vif proteins, human immunodeficiency virus (HIV), bovine immunodeficiency virus (BIV), and feline immunodeficiency virus (FIV) Vif appear specific to the A3Z3-type protein of their hosts. We conclude, first, that the Vif-A3Z3 interaction can be promiscuous and, second, despite this tendency, that each lentiviral Vif protein is optimized to degrade the A3Z3 protein of its mammalian host. Our results thereby suggest that the Vif-A3Z3 interaction is relevant to lentivirus biology.


PLOS ONE | 2007

The restriction of zoonotic PERV transmission by human APOBEC3G.

Stefán R. Jónsson; Rebecca S. LaRue; Mark D. Stenglein; Scott C. Fahrenkrug; Valgerdur Andrésdóttir; Reuben S. Harris

The human APOBEC3G protein is an innate anti-viral factor that can dominantly inhibit the replication of some endogenous and exogenous retroviruses. The prospects of purposefully harnessing such an anti-viral defense are under investigation. Here, long-term co-culture experiments were used to show that porcine endogenous retrovirus (PERV) transmission from pig to human cells is reduced to nearly undetectable levels by expressing human APOBEC3G in virus-producing pig kidney cells. Inhibition occurred by a deamination-independent mechanism, likely after particle production but before the virus could immortalize by integration into human genomic DNA. PERV inhibition did not require the DNA cytosine deaminase activity of APOBEC3G and, correspondingly, APOBEC3G-attributable hypermutations were not detected. In contrast, over-expression of the sole endogenous APOBEC3 protein of pigs failed to interfere significantly with PERV transmission. Together, these data constitute the first proof-of-principle demonstration that APOBEC3 proteins can be used to fortify the innate anti-viral defenses of cells to prevent the zoonotic transmission of an endogenous retrovirus. These studies suggest that human APOBEC3G-transgenic pigs will provide safer, PERV-less xenotransplantation resources and that analogous cross-species APOBEC3-dependent restriction strategies may be useful for thwarting other endogenous as well as exogenous retrovirus infections.


Journal of Virology | 2007

Duplicated Sequence Motif in the Long Terminal Repeat of Maedi-Visna Virus Extends Cell Tropism and Is Associated with Neurovirulence

Thórdur Óskarsson; Hulda S. Hreggvidsdóttir; Gudrún Agnarsdóttir; Sigrídur Matthíasdóttir; Margrét H. Ogmundsdóttir; Stefán R. Jónsson; Gudmundur Georgsson; Sigurdur Ingvarsson; Ólafur S. Andrésson; Valgerdur Andrésdóttir

ABSTRACT Maedi-visna virus (MVV) is a lentivirus of sheep causing chronic inflammatory disease of the lungs (maedi) and the nervous system (visna). We have previously shown that a duplicated sequence in the long terminal repeat (LTR) of MVV is a determinant of cell tropism. Here, we demonstrate that deletion of a CAAAT sequence from either one of the repeats resulted in poor virus growth in sheep choroid plexus cells. A duplication in the LTR encompassing the CAAAT sequence was found in four neurological field cases that were sequenced, but no duplication was present in the LTRs from seven maedi cases; one maedi isolate was mixed. These results indicate that the duplication in the LTR is associated with neurovirulence.


Cell Reports | 2015

Lineage-Specific Viral Hijacking of Non-Canonical E3 Ubiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity

Joshua Kane; David J. Stanley; Judd F. Hultquist; Jeffrey R. Johnson; Nicole Mietrach; Jennifer M. Binning; Stefán R. Jónsson; Sarah Barelier; Billy W. Newton; Tasha Johnson; Kathleen Franks-Skiba; Ming Li; William L. Brown; Hörður Ingi Gunnarsson; Adalbjorg Adalbjornsdóttir; J.S. Fraser; Reuben S. Harris; Valgerður Andrésdóttir; John D. Gross; Nevan J. Krogan

HIV-1 encodes the accessory protein Vif, which hijacks a host Cullin-RING ubiquitin ligase (CRL) complex as well as the non-canonical cofactor CBFβ, to antagonize APOBEC3 antiviral proteins. Non-canonical cofactor recruitment to CRL complexes by viral factors, to date, has only been attributed to HIV-1 Vif. To further study this phenomenon, we employed a comparative approach combining proteomic, biochemical, structural, and virological techniques to investigate Vif complexes across the lentivirus genus, including primate (HIV-1 and simian immunodeficiency virus macaque [SIVmac]) and non-primate (FIV, BIV, and MVV) viruses. We find that CBFβ is completely dispensable for the activity of non-primate lentiviral Vif proteins. Furthermore, we find that BIV Vif requires no cofactor and that MVV Vif requires a novel cofactor, cyclophilin A (CYPA), for stable CRL complex formation and anti-APOBEC3 activity. We propose modular conservation of Vif complexes allows for potential exaptation of functions through the acquisition of non-CRL-associated host cofactors while preserving anti-APOBEC3 activity.


Science | 2017

A supramolecular assembly mediates lentiviral DNA integration

Allison Ballandras-Colas; Daniel P. Maskell; Erik Serrao; Julia Locke; Paolo Swuec; Stefán R. Jónsson; Abhay Kotecha; Nicola J. Cook; Valerie E. Pye; Ian A. Taylor; Valgerdur Andrésdóttir; Alan Engelman; Alessandro Costa; Peter Cherepanov

High-resolution insights into the intasome An essential step in the life cycle of lentiviruses such as HIV-1 is when viral DNA integrates into the host genome, establishing a permanent infection of the host cell. The viral integrase enzyme catalyzes this process and is a major drug target. During viral integration, integrase binds the ends of viral DNA, forming a higher-order structure called the intasome. Passos et al. and Ballandras-Colas et al. used cryo—electron microscopy to solve the structures of the intasomes from HIV-1 and maedi-visna virus (ovine lentivirus), respectively. These structures reveal how integrase self-associates to form a functional intasome and help resolve previous conflicting models of intasome assembly. Science, this issue p. 89, p. 93 Cryo–electron microscopy reveals how lentiviral DNA and the viral integrase assemble to promote retroviral integration into host cell DNA. Retroviral integrase (IN) functions within the intasome nucleoprotein complex to catalyze insertion of viral DNA into cellular chromatin. Using cryo–electron microscopy, we now visualize the functional maedi-visna lentivirus intasome at 4.9 angstrom resolution. The intasome comprises a homo-hexadecamer of IN with a tetramer-of-tetramers architecture featuring eight structurally distinct types of IN protomers supporting two catalytically competent subunits. The conserved intasomal core, previously observed in simpler retroviral systems, is formed between two IN tetramers, with a pair of C-terminal domains from flanking tetramers completing the synaptic interface. Our results explain how HIV-1 IN, which self-associates into higher-order multimers, can form a functional intasome, reconcile the bulk of early HIV-1 IN biochemical and structural data, and provide a lentiviral platform for design of HIV-1 IN inhibitors.


Journal of Virology | 2005

Simultaneous Mutations in CA and Vif of Maedi-Visna Virus Cause Attenuated Replication in Macrophages and Reduced Infectivity In Vivo

Bjarki Gudmundsson; Stefán R. Jónsson; Oddur Ólafsson; Gudrún Agnarsdóttir; Sigrídur Matthíasdóttir; Gudmundur Georgsson; Sigurbjörg Torsteinsdóttir; Vilhjálmur Svansson; Helga Bryndı́s Kristbjörnsdóttir; Sigrídur Rut Franzdóttir; Ólafur S. Andrésson; Valgerdur Andrésdóttir

ABSTRACT Maedi-visna virus (MVV) is a lentivirus of sheep sharing several key features with the primate lentiviruses. The virus causes slowly progressive diseases, mainly in the lungs and the central nervous system of sheep. Here, we investigate the molecular basis for the differential growth phenotypes of two MVV isolates. One of the isolates, KV1772, replicates well in a number of cell lines and is highly pathogenic in sheep. The second isolate, KS1, no longer grows on macrophages or causes disease. The two virus isolates differ by 129 nucleotide substitutions and two deletions of 3 and 15 nucleotides in the env gene. To determine the molecular nature of the lesions responsible for the restrictive growth phenotype, chimeric viruses were constructed and used to map the phenotype. An L120R mutation in the CA domain, together with a P205S mutation in Vif (but neither alone), could fully convert KV1772 to the restrictive growth phenotype. These results suggest a functional interaction between CA and Vif in MVV replication, a property that may relate to the innate antiretroviral defense mechanisms in sheep.


PLOS ONE | 2011

Long term follow-up of the endovascular trans-vessel wall technique for parenchymal access in rabbit with full clinical integration.

Johan Lundberg; Stefán R. Jónsson; Staffan Holmin

Objective Endovascular techniques are providing options to surgical/percutaneous cell transplantation methods. Some cells, e.g. insulin producing cells, are not suitable for intra-luminal transplantation and for such cells, other options must be found. We have constructed a “nanocatheter” with a penetrating tip for vessel perforation, thereby creating a working channel for parenchymal access by endovascular technique. To finish the procedure safely, the distal tip is detached to provide a securing plug in the vessel wall defect. Materials and Methods We have performed interventions with full clinical integration in the superior mesenteric artery (SMA), the subclavian artery and the external carotid artery in rabbits. No hemorrhagic- or thromboembolic events occurred during the procedure. Stenosis formation and distal embolisation were analyzed by angiography and macroscopic inspection during autopsy at five, 30 and 80 days. All animals and implanted devices were also evaluated by micro-dissections and histochemical analysis. Results In this study we show safety data on the trans-vessel wall technique by behavioral, angiographical and histological analysis. No stenosis formation was observed at any of the follow-up time points. No animals or organs have shown any signs of distress due to the intervention. Histological examination showed no signs of hemorrhage, excellent biocompatibility with no inflammation and a very limited fibrous capsule formation around the device, comparable to titanium implants. Further, no histological changes were detected in the endothelia of the vessels subject to intervention. Conclusions The trans-vessel wall technique can be applied for e.g. cell transplantations, local substance administration and tissue sampling with low risk for complications during the procedure and low risk for hemorrhage, stenosis development or adverse tissue reactions with an 80 days follow-up time. The benefit should be greatest in organs that are difficult or risky to reach with surgical techniques, such as the pancreas, the CNS and the heart.


Viruses | 2013

Host Restriction of Lentiviruses and Viral Countermeasures: APOBEC3 and Vif

Stefán R. Jónsson; Valgerdur Andrésdóttir

It is becoming increasingly clear that organisms have developed a variety of mechanisms to fight against viral infection. The viruses have developed means of counteracting these defences in various ways. The APOBEC3 proteins are a mammalian-specific family of nucleic acid cytidine deaminases that block retroviral infection. These inhibitors are counteracted by the Vif proteins encoded by most lentiviruses. In this paper, we will review the interaction of the lentiviral Vif proteins with the APOBEC3 proteins, with an emphasis on sheep APOBEC3 and maedi-visna virus (MVV) Vif.

Collaboration


Dive into the Stefán R. Jónsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge