Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Scheidler is active.

Publication


Featured researches published by Stefan Scheidler.


Ground Water | 2011

Validation of a numerical indicator of microbial contamination for karst springs.

Christoph Butscher; Adrian Auckenthaler; Stefan Scheidler; Peter Huggenberger

Rapid changes in spring water quality in karst areas due to rapid recharge of bacterially contaminated water are a major concern for drinking water suppliers and users. The main objective of this study was to use field experiments with fecal indicators to verify the vulnerability of a karst spring to pathogens, as determined by using a numerical modeling approach. The groundwater modeling was based on linear storage models that can be used to simulate karst water flow. The vulnerability of the karst groundwater is estimated using such models to calculate criteria that influence the likelihood of spring water being affected by microbial contamination. Specifically, the temporal variation in the vulnerability, depending on rainfall events and overall recharge conditions, can be assessed and quantified using the dynamic vulnerability index (DVI). DVI corresponds to the ratio of conduit to diffuse flow contributions to spring discharge. To evaluate model performance with respect to predicted vulnerability, samples from a spring were analyzed for Escherichia coli, enterococci, Clostridium perfringens, and heterotrophic plate count bacteria during and after several rainfall events. DVI was shown to be an indication of the risk of fecal contamination of spring water with sufficient accuracy to be used in drinking water management. We conclude that numerical models are a useful tool for evaluating the vulnerability of karst systems to pathogens under varying recharge conditions.


Water Air and Soil Pollution | 2012

Faecal Indicator Bacteria: Groundwater Dynamics and Transport Following Precipitation and River Water Infiltration

Rebecca M. Page; Stefan Scheidler; Elif Polat; Paul Svoboda; Peter Huggenberger

Faecal contamination of drinking water extracted from alluvial aquifers can lead to severe problems. River water infiltration can be a hazard for extraction wells located nearby, especially during high discharge events. The high dimensionality of river–groundwater interaction and the many factors affecting bacterial survival and transport in groundwater make a simple assessment of actual water quality difficult. The identification of proxy indicators for river water infiltration and bacterial contamination is an important step in managing groundwater resources and hazard assessment. The time resolution of microbial monitoring studies is often too low to establish this relationship. A proxy-based approach in such highly dynamic systems requires in-depth knowledge of the relationship between the variable of interest, e.g. river water infiltration, and its proxy indicator. In this study, continuously recorded physico-chemical parameters (temperature, electrical conductivity, turbidity, spectral absorption coefficient, particle density) were compared to the counts for faecal indicator bacteria, Escherichia coli and Enterococcus sp. obtained from intermittent sampling. Sampling for faecal indicator bacteria was conducted on two temporal scales: (a) routine bi-weekly monitoring over a month and (b) intense (bi-hourly) event-based sampling over 3 days triggered by a high discharge event. Both sampling set-ups showed that the highest bacterial concentrations occurred in the river. E. coli and Enterococcus sp. concentrations decreased with time and length of flow path in the aquifer. The event-based sampling was able to demonstrate differences in bacterial removal between clusters of observation wells linked to aquifer composition. Although no individual proxy indicator for bacterial contamination could be established, it was shown that a combined approach based on time-series of physico-chemical parameters could be used to assess river water infiltration as a hazard for drinking water quality management.


Environmental Earth Sciences | 2013

Concepts for the sustainable management of multi-scale flow systems: the groundwater system within the Laufen Basin, Switzerland

Peter Huggenberger; Jannis Epting; Stefan Scheidler

Many groundwater systems consist of multi-scale aquifer units. The exchange processes and rates between these aquifer units are complex. In order to manage such complex systems, a subdivision into different catchments, sub-catchments or groundwater bodies as manageable units is required. The sustainable management of water resources requires a comprehensive view of water-quality and water-quantity aspects not only for water supply issues, but generally also for flood protection and riverine ecosystem functions. Such transformations require an improved understanding of recharge and exchange processes between different aquifer units as well as aquifer-surface water interaction-processes at different spatiotemporal scales. The main objective of this study is to illustrate concepts by defining the geometry and scales of different aquifer units within a sedimentary basin. The Laufen Basin in the Jura Mountains represents a sub-catchment of the River Birs (Switzerland). Its structure is characterized by a pronounced local relief and a series of aquifer units which are typical for many complex groundwater systems in front of mountain chains such as the alpine foreland and the Jura Mountains of Central Europe. A combination of different concepts is required to understand multi-scale flow systems and to describe the various hydrogeological processes. Three concepts are proposed for the Laufen Basin, including: (1) a regional flow-system analysis, based on the concept of hierarchical groundwater flow systems; (2) the river-corridor concept for understanding aquifer-surface water interaction processes; and (3) the calculation of the dynamic vulnerability index and the aquifer base gradient approach for karst flow and fractured flow systems.


Science of The Total Environment | 2017

The thermal impact of subsurface building structures on urban groundwater resources – A paradigmatic example

Jannis Epting; Stefan Scheidler; Annette Affolter; Paul Borer; Matthias H. Mueller; Lukas Egli; Alejandro García-Gil; Peter Huggenberger

Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md-1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources.


Bulletin of Engineering Geology and the Environment | 2017

Tools to simulate changes in hydraulic flow systems in complex geologic settings affected by tunnel excavation

Stefan Scheidler; Peter Huggenberger; Christoph Butscher; Horst Dresmann

Geotechnical problems during and after tunnel construction are often related to groundwater circulation. In tunnelling projects, however, groundwater flow systems are often only partly known. This uncertainty is manifested by the typically scarce hydraulic data that limits the understanding of subsurface hydrogeological processes. In particular, there is a general lack of data documenting groundwater flow changes caused by tunnelling. The present paper presents a concept involving an iterative understanding of subsurface hydrogeological systems influenced by tunnelling. A major challenge of our approach consists of integrating complex geological geometries from a 3D geological model (GOCAD) into a numerical groundwater flow model (COMSOL Multiphysics). The starting point is a 3D geological model representing a regional tectonic system located in the Jura Mountains in Switzerland. This geological model is transferred into regional and local-scale groundwater flow models. Due to the lack of hydrogeological data, a 3D view of geological–hydrogeological systems is often required to respond to groundwater-induced geotechnical problems in tunnelling. Numerical groundwater flow models make it possible to perform sensitivity analysis and to test how boundary conditions and hydraulic property distributions influence calculated groundwater flow regimes. In addition, our approach enables testing the effects of changes of hydraulic regimes due to tunnel excavation at different scales.


Archive | 2011

Hypotheses and Concepts

Peter Huggenberger; Jannis Epting; Annette Affolter; Christoph Butscher; Stefan Scheidler; Jelena Simovic Rota

Within this chapter, we present and discuss several hypotheses and some concepts which we consider as important for urban geology. The first section deals with adaptive subsurface and groundwater resource management in urban areas with a focus on the definition of “system and risk profiles.” The second section discusses the importance and role of “flow across boundaries.” The third section describes an approach for the assessment of “vulnerability” of urban groundwater resources and includes a discussion on how to define “quality control systems.” In the last section, we discuss impacts of anthropogenic and climate change to quantitative and qualitative aspects of groundwater resources in the city Basel.


Archive | 2011

Examples and Case Studies

Peter Huggenberger; Jannis Epting; Annette Affolter; Christoph Butscher; Donat Fäh; Daniel Gechter; Markus Konz; Rebecca M. Page; Christian Regli; Douchko Romanov; Stefan Scheidler; Eric Zechner; Ali Zidane

The presented examples and case studies illustrate specific applications of adaptive management of water resources in the region of Basel, Northwestern Switzerland. Such concepts together with the setup of tools and process-oriented experiments allow testing hypotheses. The applied methods facilitated us to fill several gaps of knowledge of subsurface processes. The examples focus on questions with practical as well as research. Most topics are relevant for urban areas and the sustainable use of subsurface resources in general.


Grundwasser | 2010

Adaptives Grundwassermanagement in urbanen Gebieten

Annette Affolter; Peter Huggenberger; Stefan Scheidler; Jannis Epting


Grundwasser | 2010

Adaptive groundwater management in urban areas: effect of surface water-groundwater interaction using the example of artificial groundwater recharge and in- and exfiltration of the river Birs (Switzerland).

Annette Affolter; Peter Huggenberger; Stefan Scheidler; Jannis Epting


Engineering Geology | 2017

Swelling potential of clay-sulfate rocks in tunneling in complex geological settings and impact of hydraulic measures assessed by 3D groundwater modeling

Christoph Butscher; Stefan Scheidler; Hadi Farhadian; Horst Dresmann; Peter Huggenberger

Collaboration


Dive into the Stefan Scheidler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Butscher

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge