Stefan Schulze
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Schulze.
Biochimica et Biophysica Acta | 2015
Ana Karina Hochmal; Stefan Schulze; Kerstin Trompelt; Michael Hippler
The understanding of calcium as a second messenger in plants has been growing intensively over the last decades. Recently, attention has been drawn to the organelles, especially the chloroplast but focused on the stromal Ca2+ transients in response to environmental stresses. Herein we will expand this view and discuss the role of Ca2+ in photosynthesis. Moreover we address of how Ca2+ is delivered to chloroplast stroma and thylakoids. Thereby, new light is shed on the regulation of photosynthetic electron flow and light-dependent metabolism by the interplay of Ca2+, thylakoid acidification and redox status. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Molecular & Cellular Proteomics | 2013
Elodie Mathieu-Rivet; Martin Scholz; Carolina Arias; Flavien Dardelle; Stefan Schulze; François Le Mauff; Gavin Teo; Ana Karina Hochmal; Amaya Blanco-Rivero; Corinne Loutelier-Bourhis; Marie-Christine Kiefer-Meyer; Christian Fufezan; Carole Burel; Patrice Lerouge; Flor Martínez; Muriel Bardor; Michael Hippler
Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of 18O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants.
Molecular & Cellular Proteomics | 2014
Johannes Barth; Sonja Verena Bergner; Daniel Jaeger; Anna Niehues; Stefan Schulze; Martin Scholz; Christian Fufezan
Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redoxII was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O2 and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles.
Journal of Biological Chemistry | 2016
Rianne N. Esquivel; Stefan Schulze; Rachel Xu; Michael Hippler; Mechthild Pohlschröder
N-Glycosylation is a post-translational modification common to all three domains of life. In many archaea, the oligosacharyltransferase (AglB)-dependent N-glycosylation of flagellins is required for flagella assembly. However, whether N-glycosylation is required for the assembly and/or function of the structurally related archaeal type IV pili is unknown. Here, we show that of six Haloferax volcanii adhesion pilins, PilA1 and PilA2, the most abundant pilins in pili of wild-type and ΔaglB strains, are modified under planktonic conditions in an AglB-dependent manner by the same pentasaccharide detected on H. volcanii flagellins. However, unlike wild-type cells, which have surfaces decorated with discrete pili and form a dispersed layer of cells on a plastic surface, ΔaglB cells have thick pili bundles and form microcolonies. Moreover, expressing PilA1, PilA2, or PilA6 in ΔpilA[1–6]ΔaglB stimulates microcolony formation compared with their expression in ΔpilA[1–6]. Conversely, expressing PilA3 or PilA4 in ΔpilA[1–6] cells results in strong surface adhesion, but not microcolony formation, and neither pilin stimulates surface adhesion in ΔpilA[1–6]ΔaglB cells. Although PilA4 assembles into pili in the ΔpilA[1–6]ΔaglB cells, these pili are, unlike wild-type pili, curled, perhaps rendering them non-functional. To our knowledge, this is the first demonstration of a differential effect of glycosylation on pilus assembly and function of paralogous pilins. The growth of wild-type cells in low salt media, a condition that decreases AglB glycosylation, also stimulates microcolony formation and inhibits motility, supporting our hypothesis that N-glycosylation plays an important role in regulating the transition between planktonic to sessile cell states as a response to stress.
Bioinformatics | 2018
M. Kösters; Johannes Leufken; Stefan Schulze; K. Sugimoto; Joshua A. Klein; René P. Zahedi; Michael Hippler; Sebastian A. Leidel; Christian Fufezan
Motivation: In the new release of pymzML (v2.0), we have optimized the speed of this established tool for mass spectrometry data analysis to adapt to increasing amounts of data in mass spectrometry. Thus, we integrated faster libraries for numerical calculations, improved data retrieving algorithms and have optimized the source code. Importantly, to adapt to rapidly growing file sizes, we developed a generalizable compression scheme for very fast random access and applied this concept to mzML files to retrieve spectral data. Results: pymzML performs at par with established C programs when it comes to processing times. However, it offers the versatility of a scripting language, while adding unprecedented fast random access to compressed files. Additionally, we designed our compression scheme in such a general way that it can be applied to any field where fast random access to large data blocks in compressed files is desired. Availability and implementation: pymzML is freely available on https://github.com/pymzML/pymzML under GPL license. pymzML requires Python3.4+ and optionally numpy. Documentation available on http://pymzml.readthedocs.io.
Plant Physiology | 2017
Stefan Schulze; Anne Oltmanns; Nick Machnik; Gai Liu; Nannan Xu; Niklas Jarmatz; Martin Scholz; Kazuhiko Sugimoto; Christian Fufezan; Kaiyao Huang; Michael Hippler
Insertional mutagenesis of mannosidase 1A and xylosyltransferase 1A results in altered N-glycan compositions, indicating diverse roles in the trimming and modification of N-glycans in C. reinhardtii. At present, only little is known about the enzymatic machinery required for N-glycosylation in Chlamydomonas reinhardtii, leading to the formation of N-glycans harboring Xyl and methylated Man. This machinery possesses new enzymatic features, as C. reinhardtii N-glycans are independent of β1,2-N-acetylglucosaminyltransferase I. Here we have performed comparative N-glycoproteomic analyses of insertional mutants of mannosidase 1A (IMMan1A) and xylosyltransferase 1A (IMXylT1A). The disruption of man1A affected methylation of Man and the addition of terminal Xyl. The absence of XylT1A led to shorter N-glycans compared to the wild type. The use of a IMMan1AxIMXylT1A double mutant revealed that the absence of Man1A suppressed the IMXylT1A phenotype, indicating that the increased N-glycan trimming is regulated by core β1,2-Xyl and is dependent on Man1A activity. These data point toward an enzymatic cascade in the N-glycosylation pathway of C. reinhardtii with interlinked roles of Man1A and XylT1A. The results described herein represent the first step toward a functional characterization of the enzymatic N-glycosylation machinery in C. reinhardtii.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Janina Steinbeck; Ian L. Ross; Rosalba Rothnagel; Philipp Gäbelein; Stefan Schulze; Nichole Giles; Rubbiya Ali; Rohan Drysdale; Emma Sierecki; Yann Gambin; Henning Stahlberg; Yuichiro Takahashi; Michael Hippler; Ben Hankamer
Significance To optimize photosynthetic performance and minimize photooxidative damage, photosynthetic organisms evolved to efficiently balance light energy absorption and electron transport with cellular energy requirements under constantly changing light conditions. The regulation of linear electron flow (LEF) and cyclic electron flow (CEF) contributes to this fine-tuning. Here we present a model of the formation and structural molecular organization of a CEF-performing photosystem I (PSI)–light harvesting complex I (LHCI)–cytochrome (cyt) b6f supercomplex from the green alga Chlamydomonas reinhardtii. Such a structural arrangement could modulate the distinct operation of LEF and CEF to optimize light energy utilization, despite the same individual structural units contributing to these two different functional modes. Photosynthetic linear electron flow (LEF) produces ATP and NADPH, while cyclic electron flow (CEF) exclusively drives photophosphorylation to supply extra ATP. The fine-tuning of linear and cyclic electron transport levels allows photosynthetic organisms to balance light energy absorption with cellular energy requirements under constantly changing light conditions. As LEF and CEF share many electron transfer components, a key question is how the same individual structural units contribute to these two different functional modes. Here, we report the structural identification of a photosystem I (PSI)–light harvesting complex I (LHCI)–cytochrome (cyt) b6f supercomplex isolated from the unicellular alga Chlamydomonas reinhardtii under anaerobic conditions, which induces CEF. This provides strong evidence for the model that enhanced CEF is induced by the formation of CEF supercomplexes, when stromal electron carriers are reduced, to generate additional ATP. The additional identification of PSI–LHCI–LHCII complexes is consistent with recent findings that both CEF enhancement and state transitions are triggered by similar conditions, but can occur independently from each other. Single molecule fluorescence correlation spectroscopy indicates a physical association between cyt b6f and fluorescent chlorophyll containing PSI–LHCI supercomplexes. Single particle analysis identified top-view projections of the corresponding PSI–LHCI–cyt b6f supercomplex. Based on molecular modeling and mass spectrometry analyses, we propose a model in which dissociation of LHCA2 and LHCA9 from PSI supports the formation of this CEF supercomplex. This is supported by the finding that a Δlhca2 knockout mutant has constitutively enhanced CEF.
Fems Microbiology Reviews | 2018
Mechthild Pohlschröder; Friedhelm Pfeiffer; Stefan Schulze; Mohd Farid Abdul Halim
Abstract Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Nature Communications | 2016
Ana Karina Hochmal; Karen Zinzius; Ratana Charoenwattanasatien; Philipp Gäbelein; Risa Mutoh; Hideaki Tanaka; Stefan Schulze; Gai Liu; Martin Scholz; André Nordhues; Jan Niklas Offenborn; Dimitris Petroutsos; Giovanni Finazzi; Christian Fufezan; Kaiyao Huang; Genji Kurisu; Michael Hippler
Journal of Proteome Research | 2016
Lukas P. M. Kremer; Johannes Leufken; Purevdulam Oyunchimeg; Stefan Schulze; Christian Fufezan