Stefan Stoldt
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Stoldt.
Journal of Molecular Biology | 2009
Nicole Happel; Stefan Stoldt; Bernhard Schmidt; Detlef Doenecke
H1 histones are progressively phosphorylated during the cell cycle. The number of phosphorylated sites is zero to three in late S phase and increases to five or six in late G2 phase and M phase. It is assumed that this phosphorylation modulates chromatin condensation and decondensation, but its specific role remains unclear. Recently, it was shown that the somatic H1 histone subtype H1.5 becomes pentaphosphorylated during mitosis, with phosphorylated threonine 10 being the last site to be phosphorylated. We have generated an antiserum specific for human H1.5 phosphorylated at threonine 10. Immunofluorescence labeling of HeLa cells with this antiserum revealed that the phosphorylation at this site appears in prometaphase and disappears in telophase, and that this hyperphosphorylated form of H1.5 is mainly chromatin-bound in metaphase when chromatin condensation is maximal. In search of the kinase responsible for the phosphorylation at this site, we found that threonine 10 of H1.5 can be phosphorylated by glycogen synthase kinase-3 in vitro, but not by cyclin-dependent kinase 1/cyclin B and cyclin-dependent kinase 5/p35, respectively. Furthermore, addition of specific glycogen synthase kinase-3 inhibitors led to a reduction in phosphorylation at this site both in vivo and in vitro.
Biology of the Cell | 2007
Stefan Stoldt; Dirk Wenzel; Ekkehard Schulze; Detlef Doenecke; Nicole Happel
Background information: H1 histones are a protein family comprising several subtypes. Although specific functions of the individual subtypes could not be determined so far, differential roles are indicated by varied nuclear distributions as well as differential expression patterns of the H1 subtypes. Although the group of replication‐dependent H1 subtypes is synthesized during S phase, the replacement H1 subtype, H1°, is also expressed in a replication‐independent manner in non‐proliferating cells. Recently we showed, by protein biochemical analysis, that the ubiquitously expressed subtype H1x is enriched in the micrococcal nuclease‐resistant part of chromatin and that, although it shares common features with H1°, its expression is differentially regulated, since, in contrast to H1°, growth arrest or induction of differentiation did not induce an accumulation of H1x.
Molecular Biology of the Cell | 2012
Stefan Stoldt; Dirk Wenzel; Markus Hildenbeutel; Christian A. Wurm; Johannes M. Herrmann; Stefan Jakobs
Oxa1 is dynamically redistributed within the inner membrane of mitochondria. Its distribution is influenced by the availability of nuclear-encoded mitochondrial proteins, as well as by mitochondrial protein translation. The findings suggest a spatial compartmentalization of the Oxa1-mediated insertion of nuclear- and mitochondrial-encoded proteins.
PLOS ONE | 2014
Peter Ilgen; Stefan Stoldt; L. C. Conradi; Christian A. Wurm; J. Rüschoff; B. M. Ghadimi; T. Liersch; Stefan Jakobs
Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories.
Advances in Biochemical Engineering \/ Biotechnology | 2010
Stefan Jakobs; Stefan Stoldt; Daniel Neumann
Heterogeneity in the shapes of individual multicellular organisms is a daily experience. Likewise, even a quick glance through the ocular of a light microscope reveals the morphological heterogeneities in genetically identical cultured cells, whereas heterogeneities on the level of the organelles are much less obvious. This short review focuses on intracellular heterogeneities at the example of the mitochondria and their analysis by fluorescence microscopy. The overall mitochondrial shape as well as mitochondrial dynamics can be studied by classical (fluorescence) light microscopy. However, with an organelle diameter generally close to the resolution limit of light, the heterogeneities within mitochondria cannot be resolved with conventional light microscopy. Therefore, we briefly discuss here the potential of subdiffraction light microscopy (nanoscopy) to study inner-mitochondrial heterogeneities.
Journal of Microscopy | 2010
Christian A. Wurm; I. Suppanz; Stefan Stoldt; Stefan Jakobs
Live cell imaging of protein distributions is an essential tool in modern cell biology. It relies on the functional labelling of a host protein with a fluorophore, which may either be a genetically fused fluorescent protein or an organic dye binding to the host protein. The biarsenical‐tetracysteine system or ‘FlAsH‐labelling’, is based on the high affinity interaction between a biarsenical probe and a small protein tag. This approach has been successfully used for live cell imaging in the budding yeast Saccharomyces cerevisiae. However, the established labelling protocols require a lengthy overnight incubation of the cells with the dye under tightly controlled growth conditions, which severely limits the use of this approach. In this study, we characterize an efficient method for introducing FlAsH‐EDT2 into live budding yeast cells using standard electroporation. The labelling time is reduced from more than 12 h to less than 1 h without compromising the labelling efficiency or cell viability. This approach may be used for cells in different growth phases or grown under different conditions. It may be further extended to other small high affinity probes, thus opening up new possibilities for labelling in budding yeast.
ACS Chemical Biology | 2017
Alexey N. Butkevich; Haisen Ta; Michael Ratz; Stefan Stoldt; Stefan Jakobs; Vladimir N. Belov; Stefan W. Hell
A 810 nm STED nanoscopy setup and an appropriate combination of two fluorescent dyes (Si-rhodamine 680SiR and carbopyronine 610CP) have been developed for near-IR live-cell super-resolution imaging. Vimentin endogenously tagged using the CRISPR/Cas9 approach with the SNAP tag, together with a noncovalent tubulin label, provided reliable and cell-to-cell reproducible dual-color confocal and STED imaging of the cytoskeleton in living cells.
Nature Cell Biology | 2018
Stefan Stoldt; Dirk Wenzel; Kirsten Kehrein; Dietmar Riedel; Martin Ott; Stefan Jakobs
Oxidative phosphorylation (OXPHOS) is vital for the regeneration of the vast majority of ATP in eukaryotic cells1. OXPHOS is carried out by large multi-subunit protein complexes in the cristae membranes, which are invaginations of the mitochondrial inner membrane. The OXPHOS complexes are a mix of subunits encoded in the nuclear and mitochondrial genomes. Thus, the assembly of these dual-origin complexes is an enormous logistical challenge for the cell. Using super-resolution microscopy (nanoscopy) and quantitative cryo-immunogold electron microscopy, we determined where specific transcripts are translated and where distinct assembly steps of the dual-origin complexes in the yeast Saccharomyces cerevisiae occur. Our data indicate that the mitochondrially encoded proteins of complex III and complex IV are preferentially inserted in different sites of the inner membrane than those of complex V. We further demonstrate that the early, but not the late, assembly steps of complex III and complex IV occur preferentially in the inner boundary membrane. By contrast, all steps of complex V assembly occur mainly in the cristae membranes. Thus, OXPHOS complex assembly is spatially well orchestrated, probably representing an unappreciated regulatory layer in mitochondrial biogenesis.Using super-resolution microscopy and cryo-electron microscopy, Stoldt et al. show that mitochondrial transcript translation and OXPHOS complex assembly are spatially partitioned within the mitochondrial membrane.
Journal of Organic Chemistry | 2018
Benoît Roubinet; Matthias Bischoff; Shamil Nizamov; Sergey Yan; Claudia Geisler; Stefan Stoldt; Gyuzel Yu. Mitronova; Vladimir N. Belov; Mariano L. Bossi; Stefan W. Hell
GBM Annual Spring meeting Mosbach 2008 | 2008
Nicole Happel; Stefan Stoldt; Detlef Doenecke