Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Stroebele is active.

Publication


Featured researches published by Stefan Stroebele.


Proceedings of SPIE | 2004

First light of SINFONI AO-module at VLT

Henri Bonnet; Ralf Conzelmann; Bernhard Delabre; Robert Donaldson; Enrico Fedrigo; Norbert Hubin; Markus Kissler-Patig; Jean-Louis Lizon; Jerome Paufique; Silvio Rossi; Stefan Stroebele; Sebastien Tordo

SINFONI is an Adaptive Optics assisted near infrared Integral Field Spectrometer, currently in the process of installation and commissioning at the Cassegrain focus of VLT Unit Telescope 4 (YEPUN) in Paranal (Chile). The focal plane instrument (SPIFFI) provides simultaneous spectra of 2048 contiguous spatial pixels covering a two dimensional field of view with almost 100% spatial fill factor and with a spectral resolution of ~3500 in the J, H and K bands. It is fed by the Adaptive Optics Module, a 60 elements bimorph deformable mirror technology / curvature sensing system, derived from MACAO and upgraded to Laser Guide Star operations. This papers reports on the Adaptive Optics Module first light (May 31st 2004). Performances in Natural Guide Star mode were validated during the first commissioning and tests were carried out in preparation to the Laser Guide Star mode. Combined operations of the AO-Module with SPIFFI will start during the second commissioning in July. SINFONI is scheduled to be offered to the community in Natural Guide Star mode in April 2005. The commissioning of the instrument in Laser Guide Star mode will take place in the course of 2005 after successful completion of the Laser Guide Star Facility commissioning.


Proceedings of SPIE | 2006

Probing unexplored territories with MUSE: a second generation instrument for the VLT

Roland Bacon; Svend-Marian Bauer; P. Boehm; D. Boudon; Sylvie Brau-Nogue; P. Caillier; L. Capoani; C. M. Carollo; N. Champavert; T. Contini; E. Daguisé; D. Dallé; Bernhard Delabre; Julien Devriendt; S. Dreizler; Jean-Pierre Dubois; M. Dupieux; J. P. Dupin; Eric Emsellem; Pierre Ferruit; Marijn Franx; G. Gallou; J. Gerssen; B. Guiderdoni; T. Hahn; D. Hofmann; Aurélien Jarno; Andreas Kelz; C. Koehler; Wolfram Kollatschny

The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph under preliminary design study. MUSE has a field of 1x1 arcmin2 sampled at 0.2x0.2 arcsec2 and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The simultaneous spectral range is 0.465-0.93 μm, at a resolution of R~3000. MUSE couples the discovery potential of a large imaging device to the measuring capabilities of a high-quality spectrograph, while taking advantage of the increased spatial resolution provided by adaptive optics. This makes MUSE a unique and tremendously powerful instrument for discovering and characterizing objects that lie beyond the reach of even the deepest imaging surveys. MUSE has also a high spatial resolution mode with 7.5x7.5 arcsec2 field of view sampled at 25 milli-arcsec. In this mode MUSE should be able to obtain diffraction limited data-cubes in the 0.6-0.93 μm wavelength range. Although the MUSE design has been optimized for the study of galaxy formation and evolution, it has a wide range of possible applications; e.g. monitoring of outer planets atmosphere, environment of young stellar objects, super massive black holes and active nuclei in nearby galaxies or massive spectroscopic surveys of stellar fields in the Milky Way and nearby galaxies.


Proceedings of SPIE | 2006

Large DM AO systems: synthetic IM or calibration on sky?

Sylvain Oberti; Fernando Quirós-Pacheco; Simone Esposito; Riccardo Muradore; Robin Arsenault; Enrico Fedrigo; M. Kasper; Johann Kolb; Enrico Marchetti; Armando Riccardi; Christian Soenke; Stefan Stroebele

Several designs of future Adaptive Optics (AO) systems propose to use a large Deformable Mirror (DM), regarding the size as well as the number of actuators. Most of the time, there is no focal plane upstream the DM. Therefore, the classical way of calibrating the interaction matrix on an artificial source cannot be applied. Furthermore, the requirements in terms of calibration error budget are tight and the high order modes of such DMs are stiff and hence they achieve only a small stroke. This is why novel ways to determine the system Interaction Matrix (IM) have to be investigated. Several paths have been studied. One solution would be to simulate a synthetic IM. However, calibration on sky is also an option. Different techniques were simulated, tested and optimized on real AO systems. The results are presented in this paper.


Astronomical Telescopes and Instrumentation | 2003

MACAO-VLTI: an adaptive optics system for the ESO interferometer

Robin Arsenault; Jaime Alonso; Henri Bonnet; Joar Brynnel; Bernard Delabre; Robert Donaldson; Christophe Dupuy; Enrico Fedrigo; Jacopo Farinato; Norbert Hubin; Liviu Ivanescu; Markus Kasper; Jerome Paufique; Silvio Rossi; Sebastien Tordo; Stefan Stroebele; J.-L. Lizon; Pierre Gigan; Francoise Delplancke; Armin Silber; Marco Quattri; Roland Reiss

MACAO stands for Multi Application Curvature Adaptive Optics. A similar concept is applied to fulfill the need for wavefront correction for several VLT instruments. MACAO-VLTI is one of these built in 4 copies in order to equip the Coude focii of the ESO VLTs. The optical beams will then be corrected before interferometric recombination in the VLTI (Very Large Telescope Interferometer) laboratory. MACAO-VLTI uses a 60 elements bimorph mirror and curvature wavefront sensor. A custom made board processes the signals provided by the wavefront detectors, 60 Avalanche Photo-diodes, and transfer them to a commercial Power PC CPU board for Real Time Calculation. Mirrors Commands are sent to a High Voltage amplifier unit through an optical fiber link. The tip-tilt correction is done by a dedicated Tip-tilt mount holding the deformable mirror. The whole wavefront is located at the Coude focus. Software is developed in house and is ESO compatible. Expected performance is a Strehl ratio sligthly under 60% at 2.2 micron for bright reference sources (star V<10) and a limiting magnitude of 17.5 (Strehl ~0.1). The four systems will be installed in Paranal successively, the first one being planned for June 2003 and the last one for June 2004.


Proceedings of SPIE | 2008

ESO adaptive optics facility

Robin Arsenault; Pierre-Yves Madec; Norbert Hubin; Jerome Paufique; Stefan Stroebele; Christian Soenke; R. Donaldson; Enrico Fedrigo; Sylvain Oberti; Sebastien Tordo; Mark Downing; M. Kiekebusch; Ralf Conzelmann; Michel Duchateau; A. Jost; W. Hackenberg; D. Bonaccini Calia; Bernhard Delabre; Remko Stuik; Roberto Biasi; Daniele Gallieni; P. Lazzarini; M. Lelouarn; A. Glindeman

ESO has initiated in June 2004 a concept of Adaptive Optics Facility. One unit 8m telescope of the VLT is upgraded with a 1.1 m convex Deformable Secondary Mirror and an optimized instrument park. The AO modules GALACSI and GRAAL will provide GLAO and LTAO corrections forHawk-I and MUSE. A natural guide star mode is provided for commissioning and maintenance at the telescope. The facility is completed by a Laser Guide Star Facility launching 4 LGS from the telescope centerpiece used for the GLAO and LTAO wavefront sensing. A sophisticated test bench called ASSIST is being designed to allow an extensive testing and characterization phase of the DSM and its AO modules in Europe. Most sub-projects have entered the final design phase and the DSM has entered Manufacturing phase. First light is planned in the course of 2012 and the commissioning phases should be completed by 2013.


Proceedings of SPIE | 2004

MACAO-CRIRES: a step toward high-resolution spectroscopy

Jerome Paufique; Peter Biereichel; R. Donaldson; Bernhard Delabre; Enrico Fedrigo; F. Franza; Pierre Gigan; Domingo Gojak; Norbert Hubin; Markus Kasper; Hans-Ulrich Kaeufl; Jean-Louis Lizon; Sylvain Oberti; Jean-Francois Pirard; Eszter Pozna; Joana Santos; Stefan Stroebele

High resolution spectroscopy made an important step ahead 10 years ago, leading for example to the discovery of numerous exoplanets. But the IR did not benefit from this improvement until very recently. CRIRES will provide a dramatic improvement in the 1-5 micron region in this field. Adaptive optics will allow us increasing both flux and angular resolution on its spectra. This paper describes the adaptive optics of CRIRES, its main limitations, its main components, the principle of its calibration with an overview of the methods used and the very first results obtained since it is installed in the laboratory.


Proceedings of SPIE | 2014

Preparing for the phase B of the E-ELT MCAO module project

Emiliano Diolaiti; Carmelo Arcidiacono; Giovanni Bregoli; R. C. Butler; Matteo Lombini; Laura Schreiber; Andrea Baruffolo; Alastair Basden; M. Bellazzini; E. Cascone; P. Ciliegi; Fausto Cortecchia; Giuseppe Cosentino; Vincenzo De Caprio; Adriano De Rosa; N. A. Dipper; Simone Esposito; Italo Foppiani; E. Giro; G. Morgante; Richard M. Myers; Fabien Patru; Roberto Ragazzoni; Armando Riccardi; Marco Riva; Filippo Maria Zerbi; Mark Casali; Bernard Delabre; Norbert Hubin; Florian Kerber

The Multi-Conjugate Adaptive Optics module for the European Extremely Large Telescope has been designed to achieve uniform compensation of the atmospheric turbulence effects on a wide field of view in the near infrared. The design realized in the Phase A of the project is undergoing major revision in order to define a robust baseline in view of the next phases of the project. An overview of the on-going activities is presented.


Proceedings of SPIE | 2014

ESO adaptive optics facility progress and first laboratory test results

Robin Arsenault; Pierre-Yves Madec; Jerome Paufique; Paolo La Penna; Stefan Stroebele; Elise Vernet; Jean-Francois Pirard; W. Hackenberg; Harald Kuntschner; Johann Kolb; Nicolas Muller; Aurea Garcia-Rissmann; Miska Le Louarn; Paola Amico; Norbert Hubin; Jean-Louis Lizon; Rob Ridings; Pierre Haguenauer; José Antonio Abad; Gerhard Fischer; Volker Heinz; M. Kiekebusch; Javier Argomedo; Ralf Conzelmann; Sebastien Tordo; R. Donaldson; Christian Soenke; Philippe Duhoux; Enrico Fedrigo; Bernard Delabre

The Adaptive Optics Facility project is completing the integration of its systems at ESO Headquarters in Garching. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM has undergone a series of tests on ASSIST in 2013 which have validated its optical performance and launched the System Test Phase of the AOF. This has been followed by the performance evaluation of the GRAAL natural guide star mode on-axis and will continue in 2014 with its Ground Layer AO mode. The GALACSI module (for MUSE) Wide-Field-Mode (GLAO) and the more challenging Narrow-Field-Mode (LTAO) will then be tested. The AOF has also taken delivery of the second scientific thin shell mirror and the first 22 Watt Sodium laser Unit. We will report on the system tests status, the performances evaluated on the ASSIST bench and advancement of the 4Laser Guide Star Facility. We will also present the near future plans for commissioning on the telescope and some considerations on tools to ensure an efficient operation of the Facility in Paranal.


Astronomical Telescopes and Instrumentation | 2000

MACAO and its application for the VLT Interferometer

Robert Donaldson; Domenico Bonaccini; Joar Brynnel; Bernard Buzzoni; Laird M. Close; Bernard Delabre; Christophe Dupuy; Jacopo Farinato; Enrico Fedrigo; Norbert Hubin; Enrico Marchetti; Stefan Stroebele; Sebastien Tordo

The European Southern Observatory is developing a medium order curvature adaptive optics system designed to be operable with minimal modification at any focus of the Very Large telescope (VLT). The first application of this AO system (MACAO) is to equip all four VLT Unit Telescope (UT) Coude foci with 60 element AO systems capable of delivering to the VLT Interferometer (VLTI) > 50% K band Strehl. The AO system being used by an interferometer is constrained to introduce minimal piston and operating as a sub-system of a large and complex instrument to have a robust architecture and simple operation. Installation of the first AO system is scheduled to begin first Quarter 2002 with completion of all four UTs by early 2004. Other applications of the MACAO system will be for use by the CRIRES and SPIFFI spectrographs.


Proceedings of SPIE | 2012

ESO Adaptive Optics Facility Progress Report

Robin Arsenault; Pierre-Yves Madec; Jerome Paufique; Paolo La Penna; Stefan Stroebele; Elise Vernet; Jean-Francois Pirard; W. Hackenberg; Harald Kuntschner; L. Jochum; Johann Kolb; Nicolas Muller; Miska Le Louarn; Paola Amico; Norbert Hubin; Jean-Louis Lizon; Rob Ridings; José Antonio Abad; Gert Fischer; Volker Heinz; M. Kiekebusch; Javier Argomedo; Ralf Conzelmann; Sebastien Tordo; Robert Donaldson; Christian Soenke; Philippe Duhoux; Enrico Fedrigo; Bernard Delabre; A. Jost

The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

Collaboration


Dive into the Stefan Stroebele's collaboration.

Top Co-Authors

Avatar

Norbert Hubin

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Jerome Paufique

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Robin Arsenault

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Bernard Delabre

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Enrico Fedrigo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Sebastien Tordo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Sylvain Oberti

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Conzelmann

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

R. Donaldson

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge