Stefan Trotzky
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Trotzky.
Science | 2008
Stefan Trotzky; Patrick Cheinet; Simon Fölling; M. Feld; U. Schnorrberger; Ana Maria Rey; Anatoli Polkovnikov; Eugene Demler; Mikhail D. Lukin; Immanuel Bloch
Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media. We report on the direct measurement of superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms in an antiferromagnetically ordered state, we measured coherent superexchange-mediated spin dynamics with coupling energies from 5 hertz up to 1 kilohertz. By dynamically modifying the potential bias between neighboring lattice sites, the magnitude and sign of the superexchange interaction can be controlled, thus allowing the system to be switched between antiferromagnetic and ferromagnetic spin interactions. We compare our findings to predictions of a two-site Bose-Hubbard model and find very good agreement, but are also able to identify corrections that can be explained by the inclusion of direct nearest-neighbor interactions.
Nature Physics | 2012
Stefan Trotzky; Yu-Ao Chen; Andreas Flesch; Ian P. McCulloch; Ulrich Schollwöck; Jens Eisert; Immanuel Bloch
How quantum many-body systems relax from an initial non-equilibrium state is one of the outstanding problems in quantum statistical physics. A study combining an experimental approach for monitoring the dynamics of strongly correlated cold atoms with theoretical analysis now provides quantitative insights into the problem.
Nature | 2007
Simon Fölling; Stefan Trotzky; Patrick Cheinet; Michael Feld; Robert Saers; Artur Widera; Torben Müller; Immanuel Bloch
Tunnelling of material particles through a classically impenetrable barrier constitutes one of the hallmark effects of quantum physics. When interactions between the particles compete with their mobility through a tunnel junction, intriguing dynamical behaviour can arise because the particles do not tunnel independently. In single-electron or Bloch transistors, for example, the tunnelling of an electron or Cooper pair can be enabled or suppressed by the presence of a second charge carrier due to Coulomb blockade. Here we report direct, time-resolved observations of the correlated tunnelling of two interacting ultracold atoms through a barrier in a double-well potential. For the regime in which the interactions between the atoms are weak and tunnel coupling dominates, individual atoms can tunnel independently, similar to the case of a normal Josephson junction. However, when strong repulsive interactions are present, two atoms located on one side of the barrier cannot separate, but are observed to tunnel together as a pair in a second-order co-tunnelling process. By recording both the atom position and phase coherence over time, we fully characterize the tunnelling process for a single atom as well as the correlated dynamics of a pair of atoms for weak and strong interactions. In addition, we identify a conditional tunnelling regime in which a single atom can only tunnel in the presence of a second particle, acting as a single atom switch. Such second-order tunnelling events, which are the dominating dynamical effect in the strongly interacting regime, have not been previously observed with ultracold atoms. Similar second-order processes form the basis of superexchange interactions between atoms on neighbouring lattice sites of a periodic potential, a central component of proposals for realizing quantum magnetism.
Nature Physics | 2010
Stefan Trotzky; Lode Pollet; Fabrice Gerbier; U Schnorrberger; Immanuel Bloch; Nikolai Prokof'ev; Boris Svistunov; Matthias Troyer
A major goal in the fields of ultracold quantum gases and quantum simulations is measuring the phase diagram of strongly interacting many-body systems. This has now been achieved in an optical-lattice-based quantum simulator. The simulation is validated through an ab initio comparison with large-scale numerical quantum Monte Carlo simulations.
Physical Review Letters | 2008
Patrick Cheinet; Stefan Trotzky; M. Feld; U. Schnorrberger; M. Moreno-Cardoner; Simon Fölling; Immanuel Bloch
We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to the Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid and Mott insulating regime of 87Rb.
Physical Review Letters | 2011
Yuo-Ao Chen; Sylvain Nascimbène; Monika Aidelsburger; Marcos Atala; Stefan Trotzky; Immanuel Bloch
The dynamical control of tunneling processes of single particles plays a major role in science ranging from Shapiro steps in Josephson junctions to the control of chemical reactions via light in molecules. Here we show how such control can be extended to the regime of correlated tunneling of strongly interacting particles. Through a periodic modulation of a biased tunnel contact, we have been able to coherently control single-particle and correlated two-particle hopping processes. We have furthermore been able to extend this control to superexchange spin interactions in the presence of a magnetic-field gradient. Such photon-assisted superexchange processes constitute a novel approach to realize arbitrary XXZ spin models in ultracold quantum gases, where transverse and Ising-type spin couplings can be fully controlled in magnitude and sign.
Physical Review Letters | 2008
Fabrice Gerbier; Stefan Trotzky; Simon Fölling; U Schnorrberger; J Thompson; Artur Widera; Immanuel Bloch; Lode Pollet; Matthias Troyer; Barbara Capogrosso-Sansone; Nikolai Prokof'ev; Boris Svistunov
We analyze the interference pattern produced by ultracold atoms released from an optical lattice, commonly interpreted as the momentum distributions of the trapped quantum gas. We show that for finite times of flight the resulting density distribution can, however, be significantly altered, similar to a near-field diffraction regime in optics. We illustrate our findings with a simple model and realistic quantum Monte Carlo simulations for bosonic atoms and compare the latter to experiments.
Physical Review Letters | 2012
Sylvain Nascimbène; Yu-Ao Chen; Macros Atala; Monika Aidelsburger; Stefan Trotzky; Belen Paredes; Immanuel Bloch
The concept of valence-bond resonance plays a fundamental role in the theory of the chemical bond and is believed to lie at the heart of many-body quantum physical phenomena. Here we show direct experimental evidence of a time-resolved valence-bond quantum resonance with ultracold bosonic atoms in an optical lattice. By means of a superlattice structure we create a three-dimensional array of independent four-site plaquettes, which we can fully control and manipulate in parallel. Moreover, we show how small-scale plaquette resonating valence-bond (RVB) states with s- and d-wave symmetry can be created and characterized. We anticipate our findings to open the path towards the creation and analysis of many-body RVB states in ultracold atomic gases.
Journal of Physics D | 2009
Stefan Trotzky; Theo Hoyer; Wilfried Tuszynski; Christoph Lienau; Jürgen Parisi
We report on an experimental study of the charge transfer dynamics in a P3HT : PCBM blend by means of a femtosecond fluorescence up-conversion technique. Using two-photon excitation we probe the exciton dynamics in P3HT and a P3HT : PCBM blend with a weight ratio of 1 : 1 at excitation densities of up to 6 × 1018 cm−3. In both samples we find strongly nonexponential decay traces compatible with (i) diffusion-limited exciton–exciton annihilation and (ii) diffusion-limited donor–acceptor charge transfer in the polymer blend. Additionally, our results indicate that in the P3HT : PCBM blend about 50% of the photogenerated excitons undergo a prompt charge transfer process on a time scale of about 150 fs. Our study shows that fluorescence spectroscopy with femtosecond time resolution is a powerful technique for probing ultrafast charge transfer processes in solar cell materials.
Bulletin of the American Physical Society | 2015
Stefan Trotzky; Graham Edge; Rhys Anderson; Peihang Xu; Vijin Venu; Dylan Jervis; D. McKay; Ryan Day; Joseph H. Thywissen
We demonstrate fluorescence microscopy of individual fermionic potassium atoms in a 527-nm-period optical lattice. Using electromagnetically induced transparency (EIT) cooling on the 770.1-nm D