Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Uppenkamp is active.

Publication


Featured researches published by Stefan Uppenkamp.


Neuron | 2002

The Processing of Temporal Pitch and Melody Information in Auditory Cortex

Roy D. Patterson; Stefan Uppenkamp; Ingrid S. Johnsrude; Timothy D. Griffiths

An fMRI experiment was performed to identify the main stages of melody processing in the auditory pathway. Spectrally matched sounds that produce no pitch, fixed pitch, or melody were all found to activate Heschls gyrus (HG) and planum temporale (PT). Within this region, sounds with pitch produced more activation than those without pitch only in the lateral half of HG. When the pitch was varied to produce a melody, there was activation in regions beyond HG and PT, specifically in the superior temporal gyrus (STG) and planum polare (PP). The results support the view that there is hierarchy of pitch processing in which the center of activity moves anterolaterally away from primary auditory cortex as the processing of melodic sounds proceeds.


Nature Neuroscience | 2001

Encoding of the temporal regularity of sound in the human brainstem

Timothy D. Griffiths; Stefan Uppenkamp; Ingrid S. Johnsrude; Oliver Josephs; Roy D. Patterson

We measured the neural activity associated with the temporal structure of sound in the human auditory pathway from cochlear nucleus to cortex. The temporal structure includes regularities at the millisecond level and pitch sequences at the hundreds-of-milliseconds level. Functional magnetic resonance imaging (fMRI) of the whole brain with cardiac triggering allowed simultaneous observation of activity in the brainstem, thalamus and cerebrum. This work shows that the process of recoding temporal patterns into a more stable form begins as early as the cochlear nucleus and continues up to auditory cortex.


NeuroImage | 2006

Locating the initial stages of speech-sound processing in human temporal cortex

Stefan Uppenkamp; Ingrid S. Johnsrude; Dennis Norris; William D. Marslen-Wilson; Roy D. Patterson

It is commonly assumed that, in the cochlea and the brainstem, the auditory system processes speech sounds without differentiating them from any other sounds. At some stage, however, it must treat speech sounds and nonspeech sounds differently, since we perceive them as different. The purpose of this study was to delimit the first location in the auditory pathway that makes this distinction using functional MRI, by identifying regions that are differentially sensitive to the internal structure of speech sounds as opposed to closely matched control sounds. We analyzed data from nine right-handed volunteers who were scanned while listening to natural and synthetic vowels, or to nonspeech stimuli matched to the vowel sounds in terms of their long-term energy and both their spectral and temporal profiles. The vowels produced more activation than nonspeech sounds in a bilateral region of the superior temporal sulcus, lateral and inferior to regions of auditory cortex that were activated by both vowels and nonspeech stimuli. The results suggest that the perception of vowel sounds is compatible with a hierarchical model of primate auditory processing in which early cortical stages of processing respond indiscriminately to speech and nonspeech sounds, and only higher regions, beyond anatomically defined auditory cortex, show selectivity for speech sounds.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Separating pitch chroma and pitch height in the human brain

Jason D. Warren; Stefan Uppenkamp; Roy D. Patterson; Timothy D. Griffiths

Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas.


NeuroImage | 2002

Sustained Magnetic Fields Reveal Separate Sites for Sound Level and Temporal Regularity in Human Auditory Cortex

Alexander Gutschalk; Roy D. Patterson; André Rupp; Stefan Uppenkamp; Michael Scherg

Magnetoencephalography was used to investigate the relationship between the sustained magnetic field in auditory cortex and the perception of periodic sounds. The response to regular and irregular click trains was measured at three sound intensities. Two separate sources were isolated adjacent to primary auditory cortex: One, located in lateral Heschls gyrus, was particularly sensitive to regularity and largely insensitive to sound level. The second, located just posterior to the first in planum temporale, was particularly sensitive to sound level and largely insensitive to regularity. This double dissociation to the same stimuli indicates that the two sources represent separate mechanisms; the first would appear to be involved with pitch perception and the second with loudness. The delay of the offset of the sustained field was found to increase with interclick interval up to 200 ms at least, which suggests that the sustained field offset represents a sophisticated offset-monitoring mechanism rather than simply the cessation of stimulation.


Journal of the Acoustical Society of America | 1999

Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1

Manfred Mauermann; Stefan Uppenkamp; Peter W. J. van Hengel; Birger Kollmeier

Critical experiments were performed in order to validate the two-source hypothesis of distortion product otoacoustic emissions (DPOAE) generation. Measurements of the spectral fine structure of DPOAE in response to stimulation with two sinusoids have been performed with normal-hearing subjects. The dependence of fine-structure patterns on the frequency ratio f2/f1 was investigated by changing f1 or f2 only (fixed f2 or fixed f1 paradigm, respectively), and by changing both primaries at a fixed ratio and looking at different order DPOAE. When f2/f1 is varied in the fixed ratio paradigm, the patterns of 2 f1-f2 fine structure vary considerably more if plotted as a function of f2 than as a function of fDP. Different order distortion products located at the same characteristic place on the basilar membrane (BM) show similar patterns for both, the fixed-f2 and fDP paradigms. Fluctuations in DPOAE level up to 20 dB can be observed. In contrast, the results from a fixed-fDP paradigm do not show any fine structure but only an overall dependence of DP level on the frequency ratio, with a maximum for 2f1-f2 at f2/f1 close to 1.2. Similar stimulus configurations used in the experiments have also been used for computer simulations of DPOAE in a nonlinear and active model of the cochlea. Experimental results and model simulations give strong evidence for a two-source model of DPOAE generation: The first source is the initial nonlinear interaction of the primaries close to the f2 place. The second source is caused by coherent reflection from a re-emission site at the characteristic place of the distortion product frequency. The spectral fine structure of DPOAE observed in the ear canal reflects the interaction of both these sources.


Journal of the Acoustical Society of America | 1999

Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. II. Fine structure for different shapes of cochlear hearing loss

Manfred Mauermann; Stefan Uppenkamp; Peter W. J. van Hengel; Birger Kollmeier

Distortion product otoacoustic emissions (DPOAE) were recorded from eight human subjects with mild to moderate cochlear hearing loss, using a frequency spacing of 48 primary pairs per octave and at a level L1 = L2 = 60 dBSPL and with a fixed ratio f2/f1. Subjects with different shapes of hearing thresholds were selected. They included subjects with near-normal hearing within only a limited frequency range, subjects with a notch in the audiogram, and subjects with a mild to moderate high-frequency loss. If the primaries were located in a region of normal or near-normal hearing, but DP frequencies were located in a region of raised thresholds, the distortion product 2 f1-f2 was still observable, but the DP fine structure disappeared. If the DP frequencies fell into a region of normal thresholds, fine structure was preserved as long as DPOAE were generated, even in cases of mild hearing loss in the region of the primaries. These experimental results give further strong evidence that, in addition to the initial source in the primary region, there is a second source at the characteristic place of fDP. Simulations in a nonlinear and active computer model for DPOAE generation indicate different generation mechanisms for the two components. The disappearance of DPOAE fine structure might serve as a more sensitive indicator of hearing impairment than the consideration of DP level alone.


NeuroImage | 2009

Dichotic Pitch activates Pitch Processing Centre in Heschl's Gyrus

Sebastian Puschmann; Stefan Uppenkamp; Birger Kollmeier; Christiane M. Thiel

Although several neuroimaging studies have reported pitch-evoked activations at the lateral end of Heschls gyrus, it is still under debate whether these findings truly represent activity in relation to the perception of pitch or merely stimulus-related features of pitch-evoking sounds. We investigated this issue in a functional magnetic resonance imaging (fMRI) experiment using pure tones in noise and dichotic pitch sequences, which either contained a melody or a fixed pitch. Dichotic pitch evokes a sensation of pitch only in binaural listening conditions, while the monaural signal cannot be distinguished from random noise. Our data show similar neural activations for both tones in noise and dichotic pitch, which are perceptually similar, but physically different. Pitch-related activation was found at the lateral end of Heschls gyrus in both hemispheres, providing new evidence for a general involvement of this region in pitch processing. In line with prior studies, we found melody-related activation in Planum temporale and Planum polare, but not in primary auditory areas. These results support the view of a general representation of pitch in auditory cortex, irrespective of the physical attributes of the pitch-evoking sound.


Hearing Research | 2002

The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans

André Rupp; Stefan Uppenkamp; Alexander Gutschalk; Roland Beucker; Roy D. Patterson; Torsten Dau; Michael Scherg

Short sweeps with increasing instantaneous frequency (up-chirps) designed to compensate for the propagation delay along the human cochlea enhance the magnitude of wave V of the auditory brainstem responses, while time reversed sweeps (down-chirps) reduce the magnitude of wave V [Dau, T., Wegner, O., Mellert, V., Kollmeier, B., J. Acoust. Soc. Am. 107 (2000) 1530-1540]. This effect is due to synchronisation of frequency channels along the basilar membrane and it indicates that cochlear phase delays are preserved up to the input of the inferior colliculus. The present magnetoencephalography study was designed to investigate the influence of peripheral synchronisation on the activation in primary auditory cortex. Spatio-temporal source analysis of middle-latency auditory evoked fields (MAEFs) elicited by clicks and up- and down-chirps showed that up-chirps elicited significantly larger MAEF responses compared to clicks or down-chirps. Both N19m-P30m magnitude and its latency are influenced by peripheral cross-channel phase effects. Furthermore, deconvolution of the empirical source waveforms with spike probability functions simulated with a cochlear model indicated that the source waves for all stimulus conditions could be explained with the same unit-response function, i.e. a far field recorded cortical response of a very small cell assembly along the medio-lateral axis of Heschls gyrus that receives input from a small number of excitatory fibres. The conclusion is that (i) phase delays between channels in the auditory pathway are preserved up to primary auditory cortex, and (ii) MAEFs can be described by a convolution of a unit-response function with the summary neural activity pattern of the auditory nerve.


Jaro-journal of The Association for Research in Otolaryngology | 2012

Neural Coding of Sound Intensity and Loudness in the Human Auditory System

Markus Röhl; Stefan Uppenkamp

Inter-individual differences in loudness sensation of 45 young normal-hearing participants were employed to investigate how and at what stage of the auditory pathway perceived loudness, the perceptual correlate of sound intensity, is transformed into neural activation. Loudness sensation was assessed by categorical loudness scaling, a psychoacoustical scaling procedure, whereas neural activation in the auditory cortex, inferior colliculi, and medial geniculate bodies was investigated with functional magnetic resonance imaging (fMRI). We observed an almost linear increase of perceived loudness and percent signal change from baseline (PSC) in all examined stages of the upper auditory pathway. Across individuals, the slope of the underlying growth function for perceived loudness was significantly correlated with the slope of the growth function for the PSC in the auditory cortex, but not in subcortical structures. In conclusion, the fMRI correlate of neural activity in the auditory cortex as measured by the blood oxygen level-dependent effect appears to be more a linear reflection of subjective loudness sensation rather than a display of physical sound pressure level, as measured using a sound-level meter.

Collaboration


Dive into the Stefan Uppenkamp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesko L. Verhey

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge