Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Vinckier is active.

Publication


Featured researches published by Stefan Vinckier.


Cell | 2009

Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization

Massimiliano Mazzone; Daniela Dettori; Rodrigo Leite de Oliveira; Sonja Loges; Thomas Schmidt; Bart Jonckx; Ya Min Tian; Anthony A. Lanahan; Patrick J. Pollard; Carmen Ruiz de Almodovar; Frederik De Smet; Stefan Vinckier; Julián Aragonés; Koen Debackere; Aernout Luttun; Sabine Wyns; Bénédicte F. Jordan; Alberto Pisacane; Bernard Gallez; Maria Grazia Lampugnani; Elisabetta Dejana; Michael Simons; Peter J. Ratcliffe; Patrick H. Maxwell; Peter Carmeliet

A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2(+/-) mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy.


Cancer Cell | 2011

HRG Inhibits Tumor Growth and Metastasis by Inducing Macrophage Polarization and Vessel Normalization through Downregulation of PlGF

Charlotte Rolny; Massimiliano Mazzone; Sònia Tugues; Damya Laoui; Irja Johansson; Cathy Coulon; Mario Leonardo Squadrito; Inmaculada Segura; Xiujuan Li; Ellen Knevels; Sandra Costa; Stefan Vinckier; Tom Dresselaer; Peter Åkerud; Maria De Mol; Henriikka Salomäki; Mia Phillipson; Sabine Wyns; Erik G. Larsson; Ian Buysschaert; Johan Botling; Uwe Himmelreich; Jo A. Van Ginderachter; Michele De Palma; Mieke Dewerchin; Lena Claesson-Welsh; Peter Carmeliet

Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like) phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG) inhibits tumor growth and metastasis, while improving chemotherapy. By skewing TAM polarization away from the M2- to a tumor-inhibiting M1-like phenotype, HRG promotes antitumor immune responses and vessel normalization, effects known to decrease tumor growth and metastasis and to enhance chemotherapy. Skewing of TAM polarization by HRG relies substantially on downregulation of placental growth factor (PlGF). Besides unveiling an important role for TAM polarization in tumor vessel abnormalization, and its regulation by HRG/PlGF, these findings offer therapeutic opportunities for anticancer and antiangiogenic treatment.


Cell | 2010

Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease.

Sara Van de Veire; Ingeborg Stalmans; Femke Heindryckx; Hajimu Oura; Annemilai Tijeras-Raballand; Thomas Schmidt; Sonja Loges; Imke Albrecht; Bart Jonckx; Stefan Vinckier; Christophe Van Steenkiste; Sònia Tugues; Charlotte Rolny; Maria De Mol; Daniela Dettori; Patricia Hainaud; Lieve Coenegrachts; Jean Olivier Contreres; Tine Van Bergen; Henar Cuervo; Wei Hong Xiao; Carole Le Henaff; Ian Buysschaert; Behzad Kharabi Masouleh; Anja Geerts; Tibor Schomber; Philippe Bonnin; Vincent Lambert; Jurgen Haustraete; Serena Zacchigna

Our findings that PlGF is a cancer target and anti-PlGF is useful for anticancer treatment have been challenged by Bais et al. Here we take advantage of carcinogen-induced and transgenic tumor models as well as ocular neovascularization to report further evidence in support of our original findings of PlGF as a promising target for anticancer therapies. We present evidence for the efficacy of additional anti-PlGF antibodies and their ability to phenocopy genetic deficiency or silencing of PlGF in cancer and ocular disease but also show that not all anti-PlGF antibodies are effective. We also provide additional evidence for the specificity of our anti-PlGF antibody and experiments to suggest that anti-PlGF treatment will not be effective for all tumors and why. Further, we show that PlGF blockage inhibits vessel abnormalization rather than density in certain tumors while enhancing VEGF-targeted inhibition in ocular disease. Our findings warrant further testing of anti-PlGF therapies.


Cell Metabolism | 2014

Partial and Transient Reduction of Glycolysis by PFKFB3 Blockade Reduces Pathological Angiogenesis

Sandra Schoors; Katrien De Bock; Anna Rita Cantelmo; Maria Georgiadou; Bart Ghesquière; Sandra Cauwenberghs; Anna Kuchnio; Brian W. Wong; Annelies Quaegebeur; Jermaine Goveia; Francesco Bifari; Xingwu Wang; Raquel Blanco; Bieke Tembuyser; Ann Bouché; Stefan Vinckier; Santiago Diaz-Moralli; Holger Gerhardt; Sucheta Telang; Marta Cascante; Jason Chesney; Mieke Dewerchin; Peter Carmeliet

Strategies targeting pathological angiogenesis have focused primarily on blocking vascular endothelial growth factor (VEGF), but resistance and insufficient efficacy limit their success, mandating alternative antiangiogenic strategies. We recently provided genetic evidence that the glycolytic activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) promotes vessel formation but did not explore the antiangiogenic therapeutic potential of PFKFB3 blockade. Here, we show that blockade of PFKFB3 by the small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) reduced vessel sprouting in endothelial cell (EC) spheroids, zebrafish embryos, and the postnatal mouse retina by inhibiting EC proliferation and migration. 3PO also suppressed vascular hyperbranching induced by inhibition of Notch or VEGF receptor 1 (VEGFR1) and amplified the antiangiogenic effect of VEGF blockade. Although 3PO reduced glycolysis only partially and transiently in vivo, this sufficed to decrease pathological neovascularization in ocular and inflammatory models. These insights may offer therapeutic antiangiogenic opportunities.


Nature | 2015

Fatty acid carbon is essential for dNTP synthesis in endothelial cells

Sandra Schoors; Ulrike Bruning; Rindert Missiaen; Karla C. S. Queiroz; Gitte Borgers; Ilaria Elia; Annalisa Zecchin; Anna Rita Cantelmo; Stefan Christen; Jermaine Goveia; Ward Heggermont; Lucica Goddë; Stefan Vinckier; Paul P. Van Veldhoven; Guy Eelen; Luc Schoonjans; Holger Gerhardt; Mieke Dewerchin; Myriam Baes; Katrien De Bock; Bart Ghesquière; Sophia Y. Lunt; Sarah Maria Fendt; Peter Carmeliet

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


The Journal of Neuroscience | 2009

LOSS OF THE CHOLESTEROL-BINDING PROTEIN PROMININ-1/CD133 CAUSES DISK DYSMORPHOGENESIS AND PHOTORECEPTOR DEGENERATION

Serena Zacchigna; Hideyasu Oh; Michaela Wilsch-Bräuninger; Ewa Missol-Kolka; József Jászai; Sandra Jansen; Naoyuki Tanimoto; Felix Tonagel; Mathias W. Seeliger; Wieland B. Huttner; Denis Corbeil; Mieke Dewerchin; Stefan Vinckier; Lieve Moons; Peter Carmeliet

Prominin-1/CD133 (Prom-1) is a commonly used marker of neuronal, vascular, hematopoietic and other stem cells, yet little is known about its biological role and importance in vivo. Here, we show that loss of Prom-1 results in progressive degeneration of mature photoreceptors with complete loss of vision. Despite the expression of Prom-1 on endothelial progenitors, photoreceptor degeneration was not attributable to retinal vessel defects, but caused by intrinsic photoreceptor defects in disk formation, outer segment morphogenesis, and associated with visual pigment sorting and phototransduction abnormalities. These findings shed novel insight on how Prom-1 regulates neural retinal development and phototransduction in vertebrates.


Cancer Cell | 2011

Loss or Inhibition of Stromal-Derived PlGF Prolongs Survival of Mice with Imatinib-Resistant Bcr-Abl1+ Leukemia

Thomas Schmidt; Behzad Kharabi Masouleh; Sonja Loges; Sandra Cauwenberghs; Peter Fraisl; Christa Maes; Bart Jonckx; Kim De Keersmaecker; Maria Kleppe; Marc Tjwa; Thomas Schenk; Stefan Vinckier; Rita Fragoso; Maria De Mol; Karolien Beel; Sergio Dias; Catherine M. Verfaillie; Richard E. Clark; Tim H. Brümmendorf; Peter Vandenberghe; Shahin Rafii; Tessa L. Holyoake; Andreas Hochhaus; Jan Cools; Michael Karin; Geert Carmeliet; Mieke Dewerchin; Peter Carmeliet

Imatinib has revolutionized the treatment of Bcr-Abl1(+) chronic myeloid leukemia (CML), but, in most patients, some leukemia cells persist despite continued therapy, while others become resistant. Here, we report that PlGF levels are elevated in CML and that PlGF produced by bone marrow stromal cells (BMSCs) aggravates disease severity. CML cells foster a soil for their own growth by inducing BMSCs to upregulate PlGF, which not only stimulates BM angiogenesis, but also promotes CML proliferation and metabolism, in part independently of Bcr-Abl1 signaling. Anti-PlGF treatment prolongs survival of imatinib-sensitive and -resistant CML mice and adds to the anti-CML activity of imatinib. These results may warrant further investigation of the therapeutic potential of PlGF inhibition for (imatinib-resistant) CML.


Neuron | 2011

VEGF Mediates Commissural Axon Chemoattraction through Its Receptor Flk1

Carmen Ruiz de Almodovar; Pierre Fabre; Ellen Knevels; Cathy Coulon; Inmaculada Segura; Patrick C.G. Haddick; Liesbeth Aerts; Nicolas Delattin; Geraldine Strasser; Won-Jong Oh; Christian Lange; Stefan Vinckier; Jody J. Haigh; Coralie Fouquet; Chengua Gu; Kari Alitalo; Valérie Castellani; Marc Tessier-Lavigne; Alain Chédotal; Frédéric Charron; Peter Carmeliet

Growing axons are guided to their targets by attractive and repulsive cues. In the developing spinal cord, Netrin-1 and Shh guide commissural axons toward the midline. However, the combined inhibition of their activity in commissural axon turning assays does not completely abrogate turning toward floor plate tissue, suggesting that additional guidance cues are present. Here we show that the prototypic angiogenic factor VEGF is secreted by the floor plate and is a chemoattractant for commissural axons in vitro and in vivo. Inactivation of Vegf in the floor plate or of its receptor Flk1 in commissural neurons causes axon guidance defects, whereas Flk1 blockade inhibits turning of axons to VEGF in vitro. Similar to Shh and Netrin-1, VEGF-mediated commissural axon guidance requires the activity of Src family kinases. Our results identify VEGF and Flk1 as a novel ligand/receptor pair controlling commissural axon guidance.


The Journal of Neuroscience | 2010

Matrix-binding vascular endothelial growth factor (VEGF) isoforms guide granule cell migration in the cerebellum via VEGF receptor Flk1

Carmen Ruiz de Almodovar; Cathy Coulon; Paul Antoine Salin; Ellen Knevels; Naura Chounlamountri; Koen Poesen; Karlien Hermans; Diether Lambrechts; Katie Van Geyte; Joke Dhondt; Tom Dresselaers; Julie Renaud; Julián Aragonés; Serena Zacchigna; Ilse Geudens; David Gall; Stijn Stroobants; Mireille Mutin; Karel Dassonville; Erik Storkebaum; Bénédicte F. Jordan; Ulf J. Eriksson; Lieve Moons; Rudi D'Hooge; Jody J. Haigh; Marie-Françoise Belin; Serge N. Schiffmann; Paul Van Hecke; Bernard Gallez; Stefan Vinckier

Vascular endothelial growth factor (VEGF) regulates angiogenesis, but also has important, yet poorly characterized roles in neuronal wiring. Using several genetic and in vitro approaches, we discovered a novel role for VEGF in the control of cerebellar granule cell (GC) migration from the external granule cell layer (EGL) toward the Purkinje cell layer (PCL). GCs express the VEGF receptor Flk1, and are chemoattracted by VEGF, whose levels are higher in the PCL than EGL. Lowering VEGF levels in mice in vivo or ectopic VEGF expression in the EGL ex vivo perturbs GC migration. Using GC-specific Flk1 knock-out mice, we provide for the first time in vivo evidence for a direct chemoattractive effect of VEGF on neurons via Flk1 signaling. Finally, using knock-in mice expressing single VEGF isoforms, we show that pericellular deposition of matrix-bound VEGF isoforms around PC dendrites is necessary for proper GC migration in vivo. These findings identify a previously unknown role for VEGF in neuronal migration.


Hepatology | 2011

Inhibition of Placental Growth Factor Activity Reduces the Severity of Fibrosis, Inflammation, and Portal Hypertension in Cirrhotic Mice

Christophe Van Steenkiste; Jordi Ribera; Anja Geerts; Montse Pauta; Sònia Tugues; Christophe Casteleyn; Louis Libbrecht; Kim Olievier; Ben Schroyen; Hendrik Reynaert; Leo A. van Grunsven; Bram Blomme; Stephanie Coulon; Femke Heindryckx; Martine De Vos; Jean Marie Stassen; Stefan Vinckier; José Altamirano; Ramon Bataller; Peter Carmeliet; Hans Van Vlierberghe; Isabelle Colle; Manuel Morales-Ruiz

Placental growth factor (PlGF) is associated selectively with pathological angiogenesis, and PlGF blockade does not affect the healthy vasculature. Anti‐PlGF is therefore currently being clinically evaluated for the treatment of cancer patients. In cirrhosis, hepatic fibrogenesis is accompanied by extensive angiogenesis. In this paper, we evaluated the pathophysiological role of PlGF and the therapeutic potential of anti‐PlGF in liver cirrhosis. PlGF was significantly up‐regulated in the CCl4‐induced rodent model of liver cirrhosis as well as in cirrhotic patients. Compared with wild‐type animals, cirrhotic PlGF−/− mice showed a significant reduction in angiogenesis, arteriogenesis, inflammation, fibrosis, and portal hypertension. Importantly, pharmacological inhibition with anti‐PlGF antibodies yielded similar results as genetic loss of PlGF. Notably, PlGF treatment of activated hepatic stellate cells induced sustained extracellular signal‐regulated kinase 1/2 phosphorylation, as well as chemotaxis and proliferation, indicating a previously unrecognized profibrogenic role of PlGF. Conclusion: PlGF is a disease‐candidate gene in liver cirrhosis, and inhibition of PlGF offers a therapeutic alternative with an attractive safety profile. (HEPATOLOGY 2011;)

Collaboration


Dive into the Stefan Vinckier's collaboration.

Top Co-Authors

Avatar

Peter Carmeliet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mieke Dewerchin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bart Ghesquière

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sandra Schoors

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ulrike Bruning

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Katrien De Bock

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anna Rita Cantelmo

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eric Smets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Erik Smets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guy Eelen

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge