Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Wetzel is active.

Publication


Featured researches published by Stefan Wetzel.


Angewandte Chemie | 2011

Biology-Oriented Synthesis

Stefan Wetzel; Robin S. Bon; Kamal Kumar; Herbert Waldmann

Which compound classes are best suited as probes and tools for chemical biology research and as inspiration for medicinal chemistry programs? Chemical space is enormously large and cannot be exploited conclusively by means of synthesis efforts. Methods are required that allow one to identify and map the biologically relevant subspaces of vast chemical space, and serve as hypothesis-generating tools for inspiring synthesis programs. Biology-oriented synthesis builds on structural conservatism in the evolution of proteins and natural products. It employs a hierarchical classification of bioactive compounds according to structural relationships and type of bioactivity, and selects the scaffolds of bioactive molecule classes as starting points for the synthesis of compound collections with focused diversity. Navigation in chemical space is facilitated by Scaffold Hunter, an intuitively accessible and highly interactive software. Small molecules synthesized according to BIOS are enriched in bioactivity. They facilitate the analysis of complex biological phenomena by means of acute perturbation and may serve as novel starting points to inspire drug discovery programs.


Journal of Chemical Information and Modeling | 2007

The Scaffold Tree − Visualization of the Scaffold Universe by Hierarchical Scaffold Classification

Ansgar Schuffenhauer; Peter Ertl; Silvio Roggo; Stefan Wetzel; Marcus A. Koch; Herbert Waldmann

A hierarchical classification of chemical scaffolds (molecular framework, which is obtained by pruning all terminal side chains) has been introduced. The molecular frameworks form the leaf nodes in the hierarchy trees. By an iterative removal of rings, scaffolds forming the higher levels in the hierarchy tree are obtained. Prioritization rules ensure that less characteristic, peripheral rings are removed first. All scaffolds in the hierarchy tree are well-defined chemical entities making the classification chemically intuitive. The classification is deterministic, data-set-independent, and scales linearly with the number of compounds included in the data set. The application of the classification is demonstrated on two data sets extracted from the PubChem database, namely, pyruvate kinase binders and a collection of pesticides. The examples shown demonstrate that the classification procedure handles robustly synthetic structures and natural products.


Nature Chemical Biology | 2010

Small-molecule inhibition of APT1 affects Ras localization and signaling

Frank J. Dekker; Oliver Rocks; Nachiket Vartak; Sascha Menninger; Christian Hedberg; Rengarajan Balamurugan; Stefan Wetzel; Steffen Renner; Marc Gerauer; Beate Schölermann; Marion Rusch; John W. Kramer; Daniel Rauh; Geoffrey W. Coates; Luc Brunsveld; Philippe I. H. Bastiaens; Herbert Waldmann

Cycles of depalmitoylation and repalmitoylation critically control the steady-state localization and function of various peripheral membrane proteins, such as Ras proto-oncogene products. Interference with acylation using small molecules is a strategy to modulate cellular localization--and thereby unregulated signaling--caused by palmitoylated Ras proteins. We present the knowledge-based development and characterization of a potent inhibitor of acyl protein thioesterase 1 (APT1), a bona fide depalmitoylating enzyme that is, so far, poorly characterized in cells. The inhibitor, palmostatin B, perturbs the cellular acylation cycle at the level of depalmitoylation and thereby causes a loss of the precise steady-state localization of palmitoylated Ras. As a consequence, palmostatin B induces partial phenotypic reversion in oncogenic HRasG12V-transformed fibroblasts. We identify APT1 as one of the thioesterases in the acylation cycle and show that this protein is a cellular target of the inhibitor.


Journal of Medicinal Chemistry | 2012

Charting, Navigating, and Populating Natural Product Chemical Space for Drug Discovery

Hugo Lachance; Stefan Wetzel; Kamal Kumar; Herbert Waldmann

Natural products are a heterogeneous group of compounds with diverse, yet particular molecular properties compared to synthetic compounds and drugs. All relevant analyses show that natural products indeed occupy parts of chemical space not explored by available screening collections while at the same time largely adhering to the rule-of-five. This renders them a valuable, unique, and necessary component of screening libraries used in drug discovery. With ChemGPS-NP on the Web and Scaffold Hunter two tools are available to the scientific community to guide exploration of biologically relevant NP chemical space in a focused and targeted fashion with a view to guide novel synthesis approaches. Several of the examples given illustrate the possibility of bridging the gap between computational methods and compound library synthesis and the possibility of integrating cheminformatics and chemical space analyses with synthetic chemistry and biochemistry to successfully explore chemical space for the identification of novel small molecule modulators of protein function.The examples also illustrate the synergistic potential of the chemical space concept and modern chemical synthesis for biomedical research and drug discovery. Chemical space analysis can map under explored biologically relevant parts of chemical space and identify the structure types occupying these parts. Modern synthetic methodology can then be applied to efficiently fill this “virtual space” with real compounds.From a cheminformatics perspective, there is a clear demand for open-source and easy to use tools that can be readily applied by educated nonspecialist chemists and biologists in their daily research. This will include further development of Scaffold Hunter, ChemGPS-NP, and related approaches on the Web. Such a “cheminformatics toolbox” would enable chemists and biologists to mine their own data in an intuitive and highly interactive process and without the need for specialized computer science and cheminformatics expertise. We anticipate that it may be a viable, if not necessary, step for research initiatives based on large high-throughput screening campaigns,in particular in the pharmaceutical industry, to make the most out of the recent advances in computational tools in order to leverage and take full advantage of the large data sets generated and available in house. There are “holes” in these data sets that can and should be identified and explored by chemistry and biology.


Nature Chemical Biology | 2009

Interactive exploration of chemical space with Scaffold Hunter.

Stefan Wetzel; Karsten Klein; Steffen Renner; Daniel Rauh; Tudor I. Oprea; Petra Mutzel; Herbert Waldmann

We describe Scaffold Hunter, a highly interactive computer-based tool for navigation in chemical space that fosters intuitive recognition of complex structural relationships associated with bioactivity. The program reads compound structures and bioactivity data, generates compound scaffolds, correlates them in a hierarchical tree-like arrangement, and annotates them with bioactivity. Brachiation along tree branches from structurally complex to simple scaffolds allows identification of new ligand types. We provide proof of concept for pyruvate kinase.


Nature Chemistry | 2013

Natural-product-derived fragments for fragment-based ligand discovery.

Björn Over; Stefan Wetzel; Christian Grütter; Yasushi Nakai; Steffen Renner; Daniel Rauh; Herbert Waldmann

Fragment-based ligand and drug discovery predominantly employs sp2-rich compounds covering well-explored regions of chemical space. Despite the ease with which such fragments can be coupled, this focus on flat compounds is widely cited as contributing to the attrition rate of the drug discovery process. In contrast, biologically validated natural products are rich in stereogenic centres and populate areas of chemical space not occupied by average synthetic molecules. Here, we have analysed more than 180,000 natural product structures to arrive at 2,000 clusters of natural-product-derived fragments with high structural diversity, which resemble natural scaffolds and are rich in sp3-configured centres. The structures of the cluster centres differ from previously explored fragment libraries, but for nearly half of the clusters representative members are commercially available. We validate their usefulness for the discovery of novel ligand and inhibitor types by means of protein X-ray crystallography and the identification of novel stabilizers of inactive conformations of p38α MAP kinase and of inhibitors of several phosphatases. Natural products populate areas of chemical space not occupied by average synthetic molecules. Here, an analysis of more than 180,000 natural product structures results in a library of 2,000 natural-product-derived fragments, which resemble the properties of the natural products themselves and give access to novel inhibitor chemotypes.


Cellular and Molecular Life Sciences | 2008

Biology-inspired synthesis of compound libraries

Markus Kaiser; Stefan Wetzel; Kamal Kumar; Herbert Waldmann

Abstract.Biologically active small molecules represent the basis for chemical biology applications in which small molecules are used as chemical tools to probe biological processes. In this report, we review two approaches to design and synthesize compound libraries for biological screenings, i.e., diversity-oriented synthesis (DOS) and biology-oriented synthesis (BIOS).


Nature Chemical Biology | 2009

Bioactivity-guided mapping and navigation of chemical space

Steffen Renner; Willem A. L. Van Otterlo; Marta Dominguez Seoane; Sabine Möcklinghoff; Bettina Hofmann; Stefan Wetzel; Ansgar Schuffenhauer; Peter Ertl; Tudor I. Oprea; Dieter Steinhilber; Luc Brunsveld; Daniel Rauh; Herbert Waldmann

The structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements provides a valid, intuitive means to map and navigate chemical space. We demonstrate that scaffold trees built using bioactivity as the key selection criterion for structural simplification during tree construction allow efficient and intuitive mapping, visualization and navigation of the chemical space defined by a given library, which in turn allows correlation of this chemical space with the investigated bioactivity and further compound design. Brachiation along the branches of such trees from structurally complex to simple scaffolds with retained yet varying bioactivity is feasible at high frequency for the five major pharmaceutically relevant target classes and allows for the identification of new inhibitor types for a given target. We provide proof of principle by identifying new active scaffolds for 5-lipoxygenase and the estrogen receptor ERalpha.


International Journal of Cancer | 2012

Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor.

Dominica Willmann; Soyoung Lim; Stefan Wetzel; Eric Metzger; Wolfram Wilk; Manfred Jung; Ignasi Forné; Axel Imhof; Andreas Janzer; Jutta Kirfel; Herbert Waldmann; Roland Schüle; Reinhard Buettner

Post‐translational modifications of histones by chromatin modifying enzymes regulate chromatin structure and gene expression. As deregulation of histone modifications contributes to cancer progression, inhibition of chromatin modifying enzymes such as histone demethylases is an attractive therapeutic strategy to impair cancer growth. Lysine‐specific demethylase 1 (LSD1) removes mono‐ and dimethyl marks from lysine 4 or 9 of histone H3. LSD1 in association with the androgen receptor (AR) controls androgen‐dependent gene expression and prostate tumor cell proliferation, thus highlighting LSD1 as a drug target. By combining protein structure similarity clustering and in vitro screening, we identified Namoline, a γ‐pyrone, as a novel, selective and reversible LSD1 inhibitor. Namoline blocks LSD1 demethylase activity in vitro and in vivo. Inhibition of LSD1 by Namoline leads to silencing of AR‐regulated gene expression and severely impairs androgen‐dependent proliferation in vitro and in vivo. Thus, Namoline is a novel promising starting compound for the development of therapeutics to treat androgen‐dependent prostate cancer.


Microbiological Research | 2014

High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions

Dominic Hoepfner; Stephen B. Helliwell; Heather Sadlish; Sven Schuierer; Ireos Filipuzzi; Sophie Brachat; Bhupinder Bhullar; Uwe Plikat; Yann Abraham; Marc Altorfer; Thomas Aust; Lukas Baeriswyl; Raffaele Cerino; Lena Chang; David Estoppey; Juerg Eichenberger; Mathias Frederiksen; Nicole Hartmann; Annika Hohendahl; Britta Knapp; Philipp Krastel; Nicolas Melin; Florian Nigsch; Virginie Petitjean; Frank Petersen; Ralph Riedl; Esther K. Schmitt; Frank Staedtler; Christian Studer; John A. Tallarico

Due to evolutionary conservation of biology, experimental knowledge captured from genetic studies in eukaryotic model organisms provides insight into human cellular pathways and ultimately physiology. Yeast chemogenomic profiling is a powerful approach for annotating cellular responses to small molecules. Using an optimized platform, we provide the relative sensitivities of the heterozygous and homozygous deletion collections for nearly 1800 biologically active compounds. The data quality enables unique insights into pathways that are sensitive and resistant to a given perturbation, as demonstrated with both known and novel compounds. We present examples of novel compounds that inhibit the therapeutically relevant fatty acid synthase and desaturase (Fas1p and Ole1p), and demonstrate how the individual profiles facilitate hypothesis-driven experiments to delineate compound mechanism of action. Importantly, the scale and diversity of tested compounds yields a dataset where the number of modulated pathways approaches saturation. This resource can be used to map novel biological connections, and also identify functions for unannotated genes. We validated hypotheses generated by global two-way hierarchical clustering of profiles for (i) novel compounds with a similar mechanism of action acting upon microtubules or vacuolar ATPases, and (ii) an un-annotated ORF, YIL060w, that plays a role in respiration in the mitochondria. Finally, we identify and characterize background mutations in the widely used yeast deletion collection which should improve the interpretation of past and future screens throughout the community. This comprehensive resource of cellular responses enables the expansion of our understanding of eukaryotic pathway biology.

Collaboration


Dive into the Stefan Wetzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Rauh

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wulf Blankenfeldt

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge