Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefan Zittrich is active.

Publication


Featured researches published by Stefan Zittrich.


Circulation | 2008

Identification of Cardiac Troponin I Sequence Motifs Leading to Heart Failure by Induction of Myocardial Inflammation and Fibrosis

Ziya Kaya; Stefan Göser; Sebastian J. Buss; Florian Leuschner; Renate Öttl; Jin Li; Mirko Völkers; Stefan Zittrich; Gabriele Pfitzer; Noel R. Rose; Hugo A. Katus

Background— Despite the widespread use of cardiac troponins for diagnosis of myocyte injury and risk stratification in acute cardiac disorders, little is known about the long-term effects of the released troponins on cardiac function. Recently, we showed that an autoimmune response to cardiac troponin I (cTnI) induces severe inflammation and subsequent fibrosis in the myocardium. This autoimmune disorder predisposes to heart failure and cardiac death in mice. Methods and Results— To investigate the role of cTnI-specific T cells, T cells were isolated from splenocytes of mice immunized with murine cTnI (mcTnI). Wild-type mice that received mcTnI-specific T cells showed high mcTnI-specific antibody titers, increased production of the proinflammatory cytokines interleukin-1&bgr; and tumor necrosis factor-&agr;, severe inflammation and fibrosis in the myocardium, and reduced fractional shortening. To identify the antigenic determinants of troponin I responsible for the observed inflammation, fibrosis, and heart failure, 16 overlapping 16mer to 18mer peptides covering the entire amino acid sequence of mcTnI (211 residues) were synthesized. Only mice immunized with residues 105 to 122 of mcTnI developed significant inflammation and fibrosis in the myocardium, with increased expression of the inflammatory chemokines RANTES, monocyte chemotactic protein-1, macrophage inflammatory protein-1&agr;, macrophage inflammatory protein-1&bgr;, macrophage inflammatory protein-2, T-cell activation-3, and eotaxin and the chemokine receptors CCR1, CCR2, and CCR5. Mice immunized with the corresponding human cTnI residues 104 to 121 and the mcTnI residues 131 to 148 developed milder disease. Conclusions— Transfer of troponin I–specific T cells can induce inflammation and fibrosis in wild-type mice, which leads to deterioration of contractile function. Furthermore, 2 sequence motifs of cTnI that induce inflammation and fibrosis in the myocardium are characterized.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Critical role of RAGE and HMGB1 in inflammatory heart disease

Anna Bangert; Martin Andrassy; Anna-Maria Müller; Mariella Bockstahler; Andrea Fischer; Christian Volz; Christoph Leib; Stefan Göser; Sevil Korkmaz-Icöz; Stefan Zittrich; Andreas Jungmann; Felix Lasitschka; Gabriele Pfitzer; Oliver J. Müller; Hugo A. Katus; Ziya Kaya

Significance Myocardial inflammation leads in many cases to cardiomyopathy and contributes to progressive heart failure. The exact pathological mechanism of disease induction and progression in the setting of heart failure is unknown. High-mobility group box 1 (HMGB1), an evolutionarily abundant and highly conserved protein, promotes cardiac inflammation, and in turn immunity, as a damage-associated molecular pattern. HMGB1 stimulates immunity, at least in part, through interaction with its principal binding partner RAGE (receptor for advanced glycation end products). Here we show that HMGB1 and RAGE appear to be important components in cardiac troponin I-induced experimental autoimmune myocarditis as well as in patients with myocarditis. Both molecules represent potential drug targets and show significant potential in heart failure treatment. Autoimmune response to cardiac troponin I (TnI) induces inflammation and fibrosis in the myocardium. High-mobility group box 1 (HMGB1) is a multifunctional protein that exerts proinflammatory activity by mainly binding to receptor for advanced glycation end products (RAGE). The involvement of the HMGB1–RAGE axis in the pathogenesis of inflammatory cardiomyopathy is yet not fully understood. Using the well-established model of TnI-induced experimental autoimmune myocarditis (EAM), we demonstrated that both local and systemic HMGB1 protein expression was elevated in wild-type (wt) mice after TnI immunization. Additionally, pharmacological inhibition of HMGB1 using glycyrrhizin or anti-HMGB1 antibody reduced inflammation in hearts of TnI-immunized wt mice. Furthermore, RAGE knockout (RAGE-ko) mice immunized with TnI showed no structural or physiological signs of cardiac impairment. Moreover, cardiac overexpression of HMGB1 using adeno-associated virus (AAV) vectors induced inflammation in the hearts of both wt and RAGE-ko mice. Finally, patients with myocarditis displayed increased local and systemic HMGB1 and soluble RAGE (sRAGE) expression. Together, our study highlights that HMGB1 and its main receptor, RAGE, appear to be crucial factors in the pathogenesis of TnI-induced EAM, because inhibition of HMGB1 and ablation of RAGE suppressed inflammation in the heart. Moreover, the proinflammatory effect of HMGB1 is not necessarily dependent on RAGE only. Other receptors of HMGB1 such as Toll-like receptors (TLRs) may also be involved in disease pathogenesis. These findings could be confirmed by the clinical relevance of HMGB1 and sRAGE. Therefore, blockage of one of these molecules might represent a novel therapeutic strategy in the treatment of autoimmune myocarditis and inflammatory cardiomyopathy.


Circulation Research | 2011

Role of the Cholinergic Antiinflammatory Pathway in Murine Autoimmune Myocarditis

Christoph Leib; Stefan Göser; Dorit Lüthje; Renate Öttl; Theresa Tretter; Felix Lasitschka; Stefan Zittrich; Gabriele Pfitzer; Hugo A. Katus; Ziya Kaya

Rationale: This study was performed to gain insights into novel therapeutic approaches for the treatment of autoimmune myocarditis. Objective: Chemical stimulation of the efferent arm of the vagus nerve through activation of nicotinic acetylcholine receptor subtype-7&agr; (&agr;7-nAChR) has been shown to be protective in several models of inflammatory diseases. In the present study, we investigated the potentially protective effect of vagus nerve stimulation on myocarditis. Methods and Results: A/J mice were immunized with cardiac troponin I (TnI) to induce autoimmune myocarditis. Mice were exposed to drinking water that contained nicotine in different concentrations and for different time periods (for 3 days at 12.5 mg/L; 3 days at 125 mg/L; 21 days at 12.5 mg/L; and 21 days at 125 mg/L after first immunization). TnI-immunized mice with no pharmacological treatment showed extensive myocardial inflammation and fibrosis and significantly elevated levels of interleukin-6 and tumor necrosis factor-&agr;. Furthermore, elevated levels of mRNA transcripts of proinflammatory chemokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-1&bgr;, and RANTES) and chemokine receptors (CCR1, CCR2, and CCR5) were found. Oral nicotine administration reduced inflammation within the myocardium, decreased the production of interleukin-6 and tumor necrosis factor-&agr;, and downregulated the expression of monocyte chemoattractant protein-1, macrophage inflammatory protein-1&bgr;, RANTES, CCR1, CCR2, and CCR5. In addition, nicotine treatment resulted in decreased expression of matrix metalloproteinase-14, natriuretic peptide precursor B, tissue inhibitor of metalloproteinase-1, and osteopontin, proteins that are commonly involved in heart failure. Finally, we found that nicotine reduced levels of pSTAT3 (phosphorylated signal transducer and activator of transcription 3) protein expression within the myocardium. Neostigmine treatment did not affect the progression of myocarditis. Conclusions: We showed that activation of the cholinergic antiinflammatory pathway with nicotine reduces inflammation in autoimmune myocarditis. Our results may open new possibilities in the therapeutic management of autoimmune myocarditis.


Biophysical Journal | 2007

Kinetic Mechanism of the Ca2+-Dependent Switch-On and Switch-Off of Cardiac Troponin in Myofibrils ☆ ☆☆

Johannes Solzin; Bogdan I. Iorga; Eva Sierakowski; Diana P. Gomez Alcazar; Daniel F. Ruess; Torsten Kubacki; Stefan Zittrich; Natascha Blaudeck; Gabriele Pfitzer; Robert Stehle

The kinetics of Ca2+-dependent conformational changes of human cardiac troponin (cTn) were studied on isolated cTn and within the sarcomeric environment of myofibrils. Human cTnC was selectively labeled on cysteine 84 with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole and reconstituted with cTnI and cTnT to the cTn complex, which was incorporated into guinea pig cardiac myofibrils. These exchanged myofibrils, or the isolated cTn, were rapidly mixed in a stopped-flow apparatus with different [Ca2+] or the Ca2+-buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid to determine the kinetics of the switch-on or switch-off, respectively, of cTn. Activation of myofibrils with high [Ca2+] (pCa 4.6) induced a biphasic fluorescence increase with rate constants of >2000 s−1 and ∼330 s−1, respectively. At low [Ca2+] (pCa 6.6), the slower rate was reduced to ∼25 s−1, but was still ∼50-fold higher than the rate constant of Ca2+-induced myofibrillar force development measured in a mechanical setup. Decreasing [Ca2+] from pCa 5.0–7.9 induced a fluorescence decay with a rate constant of 39 s−1, which was approximately fivefold faster than force relaxation. Modeling the data indicates two sequentially coupled conformational changes of cTnC in myofibrils: 1), rapid Ca2+-binding (kB ≈ 120 μM−1 s−1) and dissociation (kD ≈ 550 s−1); and 2), slower switch-on (kon = 390s−1) and switch-off (koff = 36s−1) kinetics. At high [Ca2+], ∼90% of cTnC is switched on. Both switch-on and switch-off kinetics of incorporated cTn were around fourfold faster than those of isolated cTn. In conclusion, the switch kinetics of cTn are sensitively changed by its structural integration in the sarcomere and directly rate-limit neither cardiac myofibrillar contraction nor relaxation.


Journal of the American Heart Association | 2012

Successful Use of mRNA-Nucleofection for Overexpression of Interleukin-10 in Murine Monocytes/Macrophages for Anti-inflammatory Therapy in a Murine Model of Autoimmune Myocarditis

Oliver Zimmermann; Jörg M. Homann; Anna Bangert; Anna-Maria Müller; Georgi Hristov; Stefan Goeser; Juliane M. Wiehe; Stefan Zittrich; Wolfgang Rottbauer; Jan Torzewski; Gabriele Pfitzer; Hugo A. Katus; Ziya Kaya

Background Overexpression of interleukin-10 (IL-10) in murine CD11b+ monocytes/macrophages via GMP-adapted mRNA-nucleofection was expected to improve clinical outcome and reduce adverse side effects in autoimmune myocarditis. This study represents the proof of principle for a novel anti-inflammatory therapy using overexpression of IL-10 in murine monocytes/macrophages by mRNA-nucleofection for the treatment of autoimmune myocarditis. Methods and Results Autoimmune myocarditis was induced in A/J mice by subcutaneous immunization with troponin I. CD11b+ monocytes/macrophages were isolated from the peritoneum and IL-10 was overexpressed by mRNA-nucleofection. These cells were injected intravenously. Myocardial inflammation was assessed via histological and immunohistochemical examinations. Myocardial fibrosis was analyzed with Massons trichrome staining. Antitroponin I antibodies were determined within the serum. Physical performance was evaluated using a running wheel and echocardiography. In vitro overexpression of IL-10 in CD11b+ monocytes/macrophages resulted in a 7-fold increased production of IL-10 (n=3). In vivo higher levels of IL-10 and less inflammation were detected within the myocardium of treated compared with control mice (n=4). IL-10–treated mice showed lower antitroponin I antibodies (n=10) and a better physical performance (n=10). Conclusions Application of IL-10–overexpressing CD11b+ monocytes/macrophages reduced inflammation and improved physical performance in a murine model of autoimmune myocarditis. Thus, the use of genetically modified monocytes/macrophages facilitated a targeted therapy of local inflammation and may reduce systemic side effects. Because the nucleofection technique is GMP adapted, an in vivo use in humans seems basically feasible and the transfer to other inflammatory diseases seems likely.


Biochemical Journal | 2010

Kinase-related protein/telokin inhibits Ca2+-independent contraction in Triton-skinned guinea pig taenia coli

Olga V. Shcherbakova; Daria V. Serebryanaya; Alexander B. Postnikov; Mechthild M. Schroeter; Stefan Zittrich; Angelika A. Noegel; Vladimir P. Shirinsky; Alexander V. Vorotnikov; Gabriele Pfitzer

KRP (kinase-related protein), also known as telokin, has been proposed to inhibit smooth muscle contractility by inhibiting the phosphorylation of the rMLC (regulatory myosin light chain) by the Ca2+-activated MLCK (myosin light chain kinase). Using the phosphatase inhibitor microcystin, we show in the present study that KRP also inhibits Ca2+-independent rMLC phosphorylation and smooth muscle contraction mediated by novel Ca2+-independent rMLC kinases. Incubating KRP-depleted Triton-skinned taenia coli with microcystin at pCa>8 induced a slow contraction reaching 90% of maximal force (Fmax) at pCa 4.5 after approximately 25 min. Loading the fibres with KRP significantly slowed down the force development, i.e. the time to reach 50% of Fmax was increased from 8 min to 35 min. KRP similarly inhibited rMLC phosphorylation of HMM (heavy meromyosin) in vitro by MLCK or by the constitutively active MLCK fragment (61K-MLCK) lacking the myosin-docking KRP domain. A C-terminally truncated KRP defective in myosin binding inhibited neither force nor HMM phosphorylation. Phosphorylated KRP inhibited the rMLC phosphorylation of HMM in vitro and Ca2+-insensitive contractions in fibres similar to unphosphorylated KRP, whereby the phosphorylation state of KRP was not altered in the fibres. We conclude that (i) KRP inhibits not only MLCK-induced contractions, but also those elicited by Ca2+-independent rMLC kinases; (ii) phosphorylation of KRP does not modulate this effect; (iii) binding of KRP to myosin is essential for this inhibition; and (iv) KRP inhibition of rMLC phosphorylation is most probably due to the shielding of the phosphorylation site on the rMLC.


Biophysical Journal | 2012

Kinetic Mechanism of Ca2+-controlled Changes of Skeletal Troponin I in Psoas Myofibrils

Alfredo Lopez-Davila; Fatiha Elhamine; D.F. Ruess; Simon Papadopoulos; Bogdan I. Iorga; F.P. Kulozik; Stefan Zittrich; Johannes Solzin; Gabriele Pfitzer; Robert Stehle

Conformational changes in the skeletal troponin complex (sTn) induced by rapidly increasing or decreasing the [Ca(2+)] were probed by 5-iodoacetamidofluorescein covalently bound to Cys-133 of skeletal troponin I (sTnI). Kinetics of conformational changes was determined for the isolated complex and after incorporating the complex into rabbit psoas myofibrils. Isolated and incorporated sTn exhibited biphasic Ca(2+)-activation kinetics. Whereas the fast phase (k(obs)∼1000 s(-1)) is only observed in this study, where kinetics were induced by Ca(2+), the slower phase resembles the monophasic kinetics of sTnI switching observed in another study (Brenner and Chalovich. 1999. Biophys. J. 77:2692-2708) that investigated the sTnI switching induced by releasing the feedback of force-generating cross-bridges on thin filament activation. Therefore, the slower conformational change likely reflects the sTnI switch that regulates force development. Modeling reveals that the fast conformational change can occur after the first Ca(2+) ion binds to skeletal troponin C (sTnC), whereas the slower change requires Ca(2+) binding to both regulatory sites of sTnC. Incorporating sTn into myofibrils increased the off-rate and lowered the Ca(2+) sensitivity of sTnI switching. Comparison of switch-off kinetics with myofibril force relaxation kinetics measured in a mechanical setup indicates that sTnI switching might limit the rate of fast skeletal muscle relaxation.


Journal of Cerebral Blood Flow and Metabolism | 2017

Aging-related alterations in eNOS and nNOS responsiveness and smooth muscle reactivity of murine basilar arteries are modulated by apocynin and phosphorylation of myosin phosphatase targeting subunit-1.

Lubomir T. Lubomirov; Symeon Papadopoulos; Sandra Pütz; Johannes Welter; Tim Klöckener; Kathrin Weckmüller; Mostafa A. Ardestani; Dilyana Filipova; Doris Metzler; Harald Metzner; Jürgen Staszewski; Stefan Zittrich; Hristo Gagov; Mechthild M. Schroeter; Gabriele Pfitzer

Aging causes major alterations of all components of the neurovascular unit and compromises brain blood supply. Here, we tested how aging affects vascular reactivity in basilar arteries from young (<10 weeks; y-BA), old (>22 months; o-BA) and old (>22 months) heterozygous MYPT1-T-696A/+ knock-in mice. In isometrically mounted o-BA, media thickness was increased by ∼10% while the passive length tension relations were not altered. Endothelial denudation or pan-NOS inhibition (100 µmol/L L-NAME) increased the basal tone by 11% in y-BA and 23% in o-BA, while inhibition of nNOS (1 µmol/L L-NPA) induced ∼10% increase in both ages. eNOS expression was ∼2-fold higher in o-BA. In o-BA, U46619-induced force was augmented (pEC50 ∼6.9 vs. pEC50 ∼6.5) while responsiveness to DEA-NONOate, electrical field stimulation or nicotine was decreased. Basal phosphorylation of MLC20-S19 and MYPT1-T-853 was higher in o-BA and was reversed by apocynin. Furthermore, permeabilized o-BA showed enhanced Ca2+-sensitivity. Old T-696A/+ BA displayed a reduced phosphorylation of MYPT1-T696 and MLC20, a lower basal tone in response to L-NAME and a reduced eNOS expression. The results indicate that the vascular hypercontractility found in o-BA is mediated by inhibition of MLCP and is partially compensated by an upregulation of endothelial NO release.


Molecular Cancer Therapeutics | 2016

A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death-Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells

Nils Lilienthal; Gregor Lohmann; Giuliano Crispatzu; Elena Vasyutina; Stefan Zittrich; Petra Mayer; Carmen D. Herling; Mehmet Kemal Tur; Michael Hallek; Gabriele Pfitzer; Stefan Barth; Marco Herling

The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell–specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell–exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor– or CLL patient–derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971–84. ©2016 AACR.


Biophysical Journal | 2011

Kinetic Mechanism of Ca2+-Induced Conformational Changes of Skeletal Muscle Troponin I in Rabbit Psoas Myofibrils

Alfredo Lopez-Davila; Stefan Zittrich; Gabriele Pfitzer; Robert Stehle

The kinetics of Ca2+-controlled conformational changes of the inhibitory subunit (sTnI) of the heterotrimeric skeletal troponin complex were determined by rapid stopped-flow at 10 °C. Conformational changes were probed by fluorescent labelling of sTnI at Cys134 located in between the second actin binding site of sTnI that interacts with actin-tropomyosin at low [Ca2+] and the switch peptide of sTnI that interacts with sTnC at high [Ca2+]. The kinetics was analysed for the sTn-complex in isolation and after its incorporation into rabbit psoas myofibrils. The rapid increase of [Ca2+] to pCa 4.5 induced biphasic fluorescence transients with similar rate constants of k+Ca1.phase ∼800 s−1 and k+Ca2.phase ∼100 s−1 in both preparations. Incorporation changed the polarity of the faster phase but not the polarity of the slower phase. Rapid reduction of [Ca2+] resulted in a monophasic fluorescence change whose rate constant k-Ca was 1.5 s−1 for isolated and 12 s−1 for incorporated sTn-complex. Thus, incorporation of the sTn-complex into the sarcomere increases the off-rate ∼8-fold while leaving the on-rate unaffected. The values of k+Ca2.phase and k-Ca determined in our myofibrils experiments are very similar to the values of kON and kOFF reported by Brenner & Chalovich (Biophys J. 1999 77:2692-708). They observed monophasic kinetics for sTnI labelled at Cys134 incorporated into skinned rabbit psoas fibers. In contrast to our experiments, they triggered sTnI-kinetics mechanically, i.e. by rapidly changing the number of force-generating cross-bridges. The faster conformational change in sTnI that is only observed in our Ca2+-triggered experiments is therefore likely associated with the Ca2+-binding process while the slower phase reports the conformational change of sTnI involved in force regulation. Supported by the Center of Molecular Medicine Cologne (CMMC-A6) and the DFG (SFB612-A2).

Collaboration


Dive into the Stefan Zittrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ziya Kaya

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noel R. Rose

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge