Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefani N. Thomas is active.

Publication


Featured researches published by Stefani N. Thomas.


Cell | 2016

Integrated proteogenomic characterization of human high-grade serous ovarian cancer

Hui Zhang; Tao Liu; Zhen Zhang; Samuel H. Payne; Bai Zhang; Jason E. McDermott; Jian-Ying Zhou; Vladislav A. Petyuk; Li Chen; Debjit Ray; Shisheng Sun; Feng Yang; Lijun Chen; Jing Wang; Punit Shah; Seong Won Cha; Paul Aiyetan; Sunghee Woo; Yuan Tian; Marina A. Gritsenko; Therese R. Clauss; Caitlin H. Choi; Matthew E. Monroe; Stefani N. Thomas; Song Nie; Chaochao Wu; Ronald J. Moore; Kun-Hsing Yu; David L. Tabb; David Fenyö

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Clinical Proteomics | 2016

Advances in mass spectrometry-based clinical biomarker discovery

Christopher A. Crutchfield; Stefani N. Thomas; Lori J. Sokoll; Daniel W. Chan

The greatest unmet needs in biomarker discovery are those discoveries that lead to the development of clinical diagnostic tests. These clinical diagnostic tests can provide early intervention when a patient would present otherwise healthy (e.g., cancer or cardiovascular disease) and aid clinical decision making with improved clinical outcomes. The past two decades have seen significant technological improvements in the analytical capabilities of mass spectrometers. Mass spectrometers are unique in that they can directly analyze any biological molecule susceptible to ionization. The biological studies of human metabolites and proteins using contemporary mass spectrometry technology (metabolomics and proteomics, respectively) has been ongoing for over a decade. Some of these studies have resulted in exciting insights into human biology. However, relatively few biomarkers have been translated into clinical tests. This review will discuss some key technological developments that have occurred over this time with an emphasis on technologies that will create new avenues for biomarker discovery.


Clinical Chemistry | 2016

Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry-Based Assays.

Andrew N. Hoofnagle; Jeffrey R. Whiteaker; Steven A. Carr; Eric Kuhn; Tao Liu; Sam A. Massoni; Stefani N. Thomas; Reid R Townsend; Lisa J. Zimmerman; Emily S. Boja; Jing Chen; Daniel L. Crimmins; Sherri R. Davies; Yuqian Gao; Tara Hiltke; Karen A. Ketchum; Christopher R. Kinsinger; Mehdi Mesri; Matthew R. Meyer; Wei Jun Qian; Regine M. Schoenherr; Mitchell G. Scott; Tujin Shi; Gordon Whiteley; John A. Wrobel; Chaochao Wu; Brad Ackermann; Ruedi Aebersold; David R. Barnidge; David M. Bunk

BACKGROUND For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. CONTENT The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care.


Biochemical Journal | 2014

Lysine Methylation is an Endogenous Post-Translational Modification of Tau Protein in Human Brain and a Modulator of Aggregation Propensity

Kristen E. Funk; Stefani N. Thomas; Kelsey N. Schafer; Grace L. Cooper; Zhongping Liao; David Clark; Austin J. Yang; Jeff Kuret

In Alzheimers disease, the microtubule-associated protein tau dissociates from the neuronal cytoskeleton and aggregates to form cytoplasmic inclusions. Although hyperphosphorylation of tau serine and threonine residues is an established trigger of tau misfunction and aggregation, tau modifications extend to lysine residues as well, raising the possibility that different modification signatures depress or promote aggregation propensity depending on site occupancy. To identify lysine residue modifications associated with normal tau function, soluble tau proteins isolated from four cognitively normal human brains were characterized by MS methods. The major detectable lysine modification was found to be methylation, which appeared in the form of mono- and di-methyl lysine residues distributed among at least 11 sites. Unlike tau phosphorylation sites, the frequency of lysine methylation was highest in the microtubule-binding repeat region that mediates both microtubule binding and homotypic interactions. When purified recombinant human tau was modified in vitro through reductive methylation, its ability to promote tubulin polymerization was retained, whereas its aggregation propensity was greatly attenuated at both nucleation and extension steps. These data establish lysine methylation as part of the normal tau post-translational modification signature in human brain, and suggest that it can function in part to protect against pathological tau aggregation.


Nature Communications | 2017

Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry

Ben C. Collins; Christie L. Hunter; Yansheng Liu; Birgit Schilling; George Rosenberger; Samuel L. Bader; Daniel W. Chan; Bradford W. Gibson; Anne-Claude Gingras; Jason M. Held; Mio Hirayama-Kurogi; Guixue Hou; Christoph Krisp; Brett Larsen; Liang Lin; Siqi Liu; Mark P. Molloy; Robert L. Moritz; Sumio Ohtsuki; Ralph Schlapbach; Nathalie Selevsek; Stefani N. Thomas; Shin-Cheng Tzeng; Hui Zhang; Ruedi Aebersold

Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-mass spectrometry data acquisition we can consistently detect and reproducibly quantify >4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry are uniformly achieved. This study demonstrates that the acquisition of reproducible quantitative proteomics data by multiple labs is achievable, and broadly serves to increase confidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-scale protein quantification.SWATH-mass spectrometry consists of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics on the scale of thousands of proteins. Here, using data generated by eleven groups worldwide, the authors show that SWATH-MS is capable of generating highly reproducible data across different laboratories.


Journal of Proteome Research | 2008

PhosphoScan: a probability-based method for phosphorylation site prediction using MS2/MS3 pair information.

Yunhu Wan; Diane Cripps; Stefani N. Thomas; Patricia Campbell; Nicholas Ambulos; Ting Chen; Austin J. Yang

Phosphopeptide identification and phosphorylation site localization are crucial aspects of many biological studies. Furthermore, multiple phosphorylations of peptides make site localization even more difficult. We developed a probability-based method to unambiguously determine phosphorylation sites within phosphopeptides using MS2/3 pair information. A comparison test was performed with SEQUEST and MASCOT predictions using a spectral data set from a synthetic doubly phosphorylated peptide, and the results showed that PhosphoScan analysis yielded a 63% phosphopeptide localization improvement compared with SEQUEST and a 57% improvement compared with MASCOT.


Analytical Chemistry | 2012

IsoQuant: A Software Tool for Stable Isotope Labeling by Amino Acids in Cell Culture-Based Mass Spectrometry Quantitation

Zhongping Liao; Yunhu Wan; Stefani N. Thomas; Austin J. Yang

Accurate protein identification and quantitation are critical when interpreting the biological relevance of large-scale shotgun proteomics data sets. Although significant technical advances in peptide and protein identification have been made, accurate quantitation of high-throughput data sets remains a key challenge in mass spectrometry data analysis and is a labor intensive process for many proteomics laboratories. Here, we report a new SILAC-based proteomics quantitation software tool, named IsoQuant, which is used to process high mass accuracy mass spectrometry data. IsoQuant offers a convenient quantitation framework to calculate peptide/protein relative abundance ratios. At the same time, it also includes a visualization platform that permits users to validate the quality of SILAC peptide and protein ratios. The program is written in the C# programming language under the Microsoft .NET framework version 4.0 and has been tested to be compatible with both 32-bit and 64-bit Windows 7. It is freely available to noncommercial users at http://www.proteomeumb.org/MZw.html .


Analytical Chemistry | 2015

Multiplexed Targeted Mass Spectrometry-Based Assays for the Quantification of N-Linked Glycosite-Containing Peptides in Serum

Stefani N. Thomas; Robert Harlan; Jing Chen; Paul Aiyetan; Yansheng Liu; Lori J. Sokoll; Ruedi Aebersold; Daniel W. Chan; Hui Zhang

Protein glycosylation is one of the most common protein modifications, and the quantitative analysis of glycoproteins has the potential to reveal biological functions and their association with disease. However, the high throughput accurate quantification of glycoproteins is technically challenging due to the scarcity of robust assays to detect and quantify glycoproteins. Here we describe the development of multiplexed targeted MS assays to quantify N-linked glycosite-containing peptides in serum using parallel reaction monitoring (PRM). Each assay was characterized by its performance metrics and criteria established by the National Cancer Institutes Clinical Proteomic Tumor Analysis Consortium (NCI CPTAC) to facilitate the widespread adoption of the assays in studies designed to confidently detect changes in the relative abundance of these analytes. An in-house developed software program, MRMPlus, was used to compute assay performance parameters including specificity, precision, and repeatability. We show that 43 selected N-linked glycosite-containing peptides identified in prostate cancer tissue studies carried out in our group were detected in the sera of prostate cancer patients within the quantitative range of the developed PRM assays. A total of 41 of these formerly N-linked glycosite-containing peptides (corresponding to 37 proteins) were reproducibly quantified based on their relative peak area ratios in human serum during PRM assay development, with 4 proteins showing differential significance in serum from nonaggressive (NAG) vs aggressive (AG) prostate cancer patient serum (n = 50, NAG vs AG). The data demonstrate that the assays can be used for the high throughput and reproducible quantification of a panel of formerly N-linked glycosite-containing peptides. The developed assays can also be used for the quantification of formerly N-linked glycosite-containing peptides in human serum irrespective of disease state.


Free Radical Biology and Medicine | 2012

Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability.

Stefani N. Thomas; Katrina M. Waters; William F. Morgan; Austin J. Yang; Janet E. Baulch

Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.


Methods of Molecular Biology | 2016

Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays

Jeffrey R. Whiteaker; Goran N. Halusa; Andrew N. Hoofnagle; Vagisha Sharma; Brendan MacLean; Ping Yan; John A. Wrobel; Jacob Kennedy; D. R. Mani; Lisa J. Zimmerman; Matthew R. Meyer; Mehdi Mesri; Emily S. Boja; Steven A. Carr; Daniel W. Chan; Xian Chen; Jing Chen; Sherri R. Davies; Matthew J. Ellis; David Fenyö; Tara Hiltke; Karen A. Ketchum; Chris Kinsinger; Eric Kuhn; Daniel C. Liebler; Tao Liu; Michael Loss; Michael J. MacCoss; Wei Jun Qian; Robert Rivers

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as an open-source repository of well-characterized targeted proteomic assays. The portal is designed to curate and disseminate highly characterized, targeted mass spectrometry (MS)-based assays by providing detailed assay performance characterization data, standard operating procedures, and access to reagents. Assay content is accessed via the portal through queries to find assays targeting proteins associated with specific cellular pathways, protein complexes, or specific chromosomal regions. The position of the peptide analytes for which there are available assays are mapped relative to other features of interest in the protein, such as sequence domains, isoforms, single nucleotide polymorphisms, and posttranslational modifications. The overarching goals are to enable robust quantification of all human proteins and to standardize the quantification of targeted MS-based assays to ultimately enable harmonization of results over time and across laboratories.

Collaboration


Dive into the Stefani N. Thomas's collaboration.

Top Co-Authors

Avatar

Hui Zhang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel W. Chan

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Tao Liu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhen Zhang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Lijun Chen

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Paul Aiyetan

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Sherri R. Davies

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bai Zhang

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge