Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania Biondi is active.

Publication


Featured researches published by Stefania Biondi.


Journal of Experimental Botany | 2008

Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit

Vanina Ziosi; Claudio Bonghi; Anna Maria Bregoli; Livio Trainotti; Stefania Biondi; Setha Sutthiwal; Satoru Kondo; Guglielmo Costa; Patrizia Torrigiani

Peach (Prunus persica L. Batsch) was chosen as a model to shed light on the physiological role of jasmonates (JAs) during fruit ripening. To this aim, the effects of methyl jasmonate (MJ, 0.40 mM) and propyl dihydrojasmonate (PDJ, 0.22 mM), applied in planta at different fruit developmental stages, on the time-course of ethylene production and fruit quality traits were evaluated. MJ-induced changes in fruit transcriptome at harvest and the expression profiling of relevant JA-responsive genes were analysed in control and JA-treated fruit. Exogenously applied JAs affected the onset of ripening depending upon the fruit developmental stage, with PDJ being more active than MJ. Both compounds enhanced the transcription of allene oxide synthase (PpAOS1), the first specific enzyme in the biosynthesis of jasmonic acid, and altered the pattern of jasmonic acid accumulation. Microarray transcriptome profiling showed that MJ down-regulated some ripening-related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (PpACO1) and polygalacturonase (PG), and the transcriptional modulator IAA7. MJ also altered the expression of cell wall-related genes, namely pectate lyase (PL) and expansins (EXPs), and up-regulated several stress-related genes, including some of those involved in JA biosynthesis. Time-course expression profiles of PpACO1, PL, PG, PpExp1, and the transcription factor LIM confirmed the array results. Thus, in peach fruit, exogenous JAs led to a ripening delay due to an interference with ripening- and stress/defence-related genes, as reflected in the transcriptome of treated fruit at harvest.


Cell Death & Differentiation | 2002

Transglutaminase activity during senescence and programmed cell death in the corolla of tobacco ( Nicotiana tabacum ) flowers

Donatella Serafini-Fracassini; S. Del Duca; F Monti; F Poli; G Sacchetti; Anna Maria Bregoli; Stefania Biondi; M. Della Mea

Corolla life span of undetached flowers of Nicotiana tabacum was divided into stages from the closed corolla (stage 1) through anthesis (stage 5) to death (stage 9). Senescence began around stage 6 in the proximal part, concomitantly with DNA laddering. Nuclear blebbing, DNA laddering, cell wall modification, decline in protein, water, pigment content and membrane integrity were observed during senescence and PCD. Transglutaminase activity was measured as mono- and bis-derivatives of putrescine (mono-PU; bis-PU) and bis-derivatives of spermidine (bis-SD). Bis-derivatives decreased with the progression of senescence, while mono-PU increased during early senescence; derivatives were present in different amounts in the proximal and distal parts of the corolla. In excised flowers, exogenous spermine delayed senescence and PCD, and caused an increase in free and acid-soluble conjugated PA levels. Bis-PU was the most abundant PA-derivative before DNA laddering stage; thereafter, bis-PU generally decreased and mono-PU became the most abundant derivative.


Planta | 2008

Oligogalacturonides enhance cytokinin-induced vegetative shoot formation in tobacco explants, inhibit polyamine biosynthetic gene expression, and promote long-term remobilisation of cell calcium

Giuseppina Falasca; F. Capitani; Federica Della Rovere; Daniela Zaghi; Cinzia Franchin; Stefania Biondi; Maria Maddalena Altamura

Long-sized oligogalacturonides (OGs) are cell wall fragments that induce defence and developmental responses. The Ca2+-dependent “egg-box” conformation is required for their activity, and polyamines may prevent them from adopting this conformation. Although OGs are known to inhibit auxin-induced growth processes, their effect on cytokinin-induced ones requires investigation. In the present work OGs were shown to promote cytokinin (benzyladenine, BA)-induced vegetative shoot formation from tobacco leaf explants, independent of the presence of CaCl2 in the medium and of auxin (indoleacetic acid, IAA) supply. The effect of polyamines, putrescine (PU) and spermidine (SD) supplied with/without their biosynthetic inhibitors (DFMO, CHA) was also investigated, and showed that spermidine enhanced adventitious vegetative shoot formation, but only on medium containing Ca2+ and IAA. Treatments with inhibitors blocked this promotive effect. OGs did not alter free polyamine concentrations, but caused a moderate increase of conjugated ones, and exhibited an early inhibitory effect on polyamine biosynthetic gene expression. OGs, but not SD, caused long-term changes in calcium-associated epifluorescent signals in the cell walls, and, later, inside the cells of specific tissues. Electron microscopy analysis (ESI system) demonstrated that calcium accumulated in the cell walls and vacuoles of OG-cultured explants. The relationship between OGs, cytokinin, calcium, and polyamines in adventitious vegetative shoot formation is discussed.


Environmental Science and Pollution Research | 2014

Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants.

Angela Cicatelli; Valeria Todeschini; Guido Lingua; Stefania Biondi; Patrizia Torrigiani; Stefano Castiglione

It was previously shown that arbuscular mycorrhizal fungi (AMF) exert a significant improvement of growth in a tolerant white poplar (Populus alba L.) clone (AL35) grown on Cu- and Zn-polluted soil via foliar alterations in the levels of defence/stress-related transcripts and molecules. However, nothing is known about the epigenetic changes which occur during tolerance acquisition in response to heavy metals (HMs) in the same mycorrhizal vs. non-mycorrhizal poplar plants. In order to analyse the epigenome in leaves of AL35 plants inoculated or not with AMF and grown in a greenhouse on multimetal polluted or unpolluted soil, the Methylation Sensitive Amplification Polymorphism (MSAP) approach was adopted to detect cytosine DNA methylation. Modest changes in cytosine methylation patterns were detected at first sampling (4xa0months from planting), whereas extensive alterations (hypomethylation) occurred at second sampling (after 6xa0months) in mycorrhizal plants grown in the presence of HMs. The sequencing of MSAP fragments led to the identification of genes belonging to several Gene Ontology categories. Seven MSAP fragments, selected on the basis of DNA methylation status in treated vs control AL35 leaves at the end of the experiment, were analysed for their transcript levels by means of qRT-PCR. Gene expression varied in treated samples relative to controls in response to HMs and/or AMF inoculation; in particular, transcripts of genes involved in RNA processing, cell wall and amino acid metabolism were upregulated in the presence of AMF with or without HMs.


Applied Microbiology and Biotechnology | 2015

Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids

Alessandra Sabia; Costanza Baldisserotto; Stefania Biondi; Roberta Marchesini; Paola Tedeschi; Annalisa Maietti; Martina Giovanardi; Lorenzo Ferroni; Simonetta Pancaldi

Neochloris oleoabundans (Chlorophyta) is widely considered one of the most promising microalgae for biotechnological applications. However, the large-scale production of microalgae requires large amounts of water. In this perspective, the possibility of using exhausted growth media for the re-cultivation of N. oleoabundans was investigated in order to simultaneously make the cultivation more economically feasible and environmentally sustainable. Experiments were performed by testing the following media: autotrophic exhausted medium (E+) and mixotrophic exhausted medium after cultivation with glucose (EG+) of N. oleoabundans cells grown in a 20-L photobioreactor (PBR). Both exhausted media were replenished with the same amounts of nitrate and phosphate as the control brackish medium (C). Growth kinetics, nitrate and phosphate consumption, photosynthetic pigments content, photosynthetic efficiency, cell morphology, and lipid production were evaluated. Moreover, the free fatty acid (FFA) composition of exhausted media and the polyamine (PA) concentrations of both algae and media were analyzed in order to test if some molecules, released into the medium, could influence algal growth and metabolism. Results showed that N. oleoabundans can efficiently grow in both exhausted media, if appropriately replenished with the main nutrients (E+ and EG+), especially in E+ and to the same extent as in C medium. Growth promotion of N. oleoabundans was attributed to PAs and alteration of the photosynthetic apparatus to FFAs. Taken together, results show that recycling growth medium is a suitable solution to obtain good N. oleoabundans biomass concentrations, while providing a more sustainable ecological impact on water resources.


Frontiers in Plant Science | 2016

New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

Iris Aloisi; Luigi Parrotta; Karina B. Ruiz; Claudia Landi; Luca Bini; Giampiero Cai; Stefania Biondi; Stefano Del Duca

Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner.


Plant Physiology and Biochemistry | 2016

Salares versus coastal ecotypes of quinoa: Salinity responses in Chilean landraces from contrasting habitats

Karina B. Ruiz; Iris Aloisi; Stefano Del Duca; Valentina Canelo; Patrizia Torrigiani; Herman Silva; Stefania Biondi

Quinoa (Chenopodium quinoa Willd.) is a highly salt-tolerant species subdivided into five ecotypes and exhibiting broad intra-specific differences in tolerance levels. In a greenhouse study, Chilean landraces belonging either to the salares (R49) or coastal lowlands (VI-1, Villarrica) ecotype with contrasting agro-ecological origins were investigated for their responses to high salinity. The effects of two levels of salinity, 100 (T1) and 300 (T2) mM NaCl, on plant growth and on some physiological parameters were measured. Leaf and root Na(+) accumulation differed among landraces. T2 reduced growth and seed yield in all landraces with maximum inhibition relative to controls in R49. Salinity negatively affected chlorophyll and total polyphenol content (TPC) in VI-1 and Villarrica but not R49. Germination on saline or control media of seeds harvested from plants treated or not with NaCl was sometimes different; the best performing landrace was R49 insofar as 45-65% of seeds germinated on 500xa0mM NaCl-containing medium. In all landraces, average seedling root length declined strongly with increasing NaCl concentration, but roots of R49 were significantly longer than those of VI-1 and Villarrica up to 300xa0mM NaCl. Salt caused increases in seed TPC relative to controls, but radical scavenging capacity was higher only in seeds from T2 plants of R49. Total SDS-extractable seed proteins were resolved into distinct bands (10-70xa0kDa) with some evident differences between landraces. Salt-induced changes in protein patterns were landrace-specific. The responses to salinity of the salares landrace are discussed in relation to its better adaptation to an extreme environment.


Ecotoxicology and Environmental Safety | 2016

Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

Valeria Scoccianti; Anahi Bucchini; Marta Iacobucci; Karina B. Ruiz; Stefania Biondi

Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.


Journal of Plant Growth Regulation | 2017

Copper-Induced Responses in Poplar Clones are Associated with Genotype- and Organ-Specific Changes in Peroxidase Activity and Proline, Polyamine, ABA, and IAA Levels

Marko Kebert; Francesca Rapparini; Luisa Neri; Gianpaolo Bertazza; Saša Orlović; Stefania Biondi

The involvement of auxin, abscisic acid (ABA), polyamines (PAs), and proline in adaptation to long-term exposure of woody plants to high levels of heavy metals in soil has received scant attention, even in poplar which is a good candidate for phytoremediation of metal-polluted soils and is regarded as a model for basic research in tree species. Three poplar clones (M1, PE19/66, and B229) were comparatively analyzed in a pot experiment for their responses to 300xa0mgxa0kg−1 Cu(NO3)2 at morphological, physiological, and biochemical levels. After 4xa0months, despite the prevalent accumulation of Cu in roots, where the metal reached potentially toxic concentrations, the three clones showed distinct Cu accumulation and translocation capacities, whereas they did not display evident toxicity symptoms or growth inhibition. Several protective mechanisms, namely decreased photosynthetic functionality, enhanced guaiacol peroxidase (GPOD) activity, and accumulation of proline and PAs, were differentially activated in Cu-treated plants in an organ- and clone-specific manner. Overall, a positive relationship between root Cu concentration with GPOD, proline, and PAs was observed. In M1, higher Cu accumulation in roots and leaves compared with other clones was reflected in stimulation of GPOD activity in both organs and in enhanced proline, and PA levels. In PE19/66, these responses were observed only in roots concomitant with high Cu accumulation. Clone B229 accumulated very low amounts of Cu, therefore, these defense responses were attenuated compared with other clones. Enhanced ABA concentrations in response to Cu were observed in PE19/66 and B229; this was likely responsible for stomatal limitation of photosynthesis in PE19/66, whereas in B229 this effect may have been counteracted by increased IAA. Essentially unchanged leaf auxin levels under Cu stress may account for the lack of shoot growth inhibition observed in all three clones; B229 was the only clone that displayed Cu-induced IAA accumulation in roots. Results are discussed in terms of clone-specific adaptive mechanisms to Cu stress in tolerant poplars.


Environmental Pollution | 2008

Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

Guido Lingua; Cinzia Franchin; Valeria Todeschini; Stefano Castiglione; Stefania Biondi; Bruno Burlando; Valerio Parravicini; Patrizia Torrigiani; Graziella Berta

Collaboration


Dive into the Stefania Biondi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge