Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania Ceoldo is active.

Publication


Featured researches published by Stefania Ceoldo.


BMC Plant Biology | 2015

Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome

Andrea Anesi; Matteo Stocchero; Silvia Dal Santo; Mauro Commisso; Sara Zenoni; Stefania Ceoldo; Giovanni Battista Tornielli; Tracey Siebert; Markus Herderich; Mario Pezzotti; Flavia Guzzo

BackgroundThe definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period.ResultsTo overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept.ConclusionsOur experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.


Scientia Agricola | 2004

In vitro culture from mature seeds of Passiflora species

Flavia Guzzo; Stefania Ceoldo; Filippo Andreetta; Marisa Levi

The genus Passiflora comprises hundred species, mainly native of the South American tropics and rainforests, which are grouped into 21 subgenera. Some species are widely studied for their economic importance and are chiefly cultivated for production of fruit juice. To obtain a continuous source of material for a screening of secondary metabolites, zygotic embryo culture was attempted for 62 Passiflora species, starting from seeds mainly collected in the wild. Twenty nine of these species produced calli, which had very different growth rates. Plants were successfully regenerated from calli of 13 different species. For 25 of the responsive species this is the first report of in vitro culture.


Plant Physiology | 2016

Disclosing the Molecular Basis of the Postharvest Life of Berry in Different Grapevine Genotypes

Sara Zenoni; Marianna Fasoli; Flavia Guzzo; Silvia Dal Santo; Alessandra Amato; Andrea Anesi; Mauro Commisso; Markus Herderich; Stefania Ceoldo; Linda Avesani; Mario Pezzotti; Giovanni Battista Tornielli

Transcriptomic and metabolomic profiling of grapevine berries after harvest in different Vitis vinifera genotypes reveals the molecular basis of cluster detachment, senescence and dehydration stress. The molecular events that characterize postripening grapevine berries have rarely been investigated and are poorly defined. In particular, a detailed definition of changes occurring during the postharvest dehydration, a process undertaken to make some particularly special wine styles, would be of great interest for both winemakers and plant biologists. We report an exhaustive survey of transcriptomic and metabolomic responses in berries representing six grapevine genotypes subjected to postharvest dehydration under identical controlled conditions. The modulation of phenylpropanoid metabolism clearly distinguished the behavior of genotypes, with stilbene accumulation as the major metabolic event, although the transient accumulation/depletion of anthocyanins and flavonols was the prevalent variation in genotypes that do not accumulate stilbenes. The modulation of genes related to phenylpropanoid/stilbene metabolism highlighted the distinct metabolomic plasticity of genotypes, allowing for the identification of candidate structural and regulatory genes. In addition to genotype-specific responses, a core set of genes was consistently modulated in all genotypes, representing the common features of berries undergoing dehydration and/or commencing senescence. This included genes controlling ethylene and auxin metabolism as well as genes involved in oxidative and osmotic stress, defense responses, anaerobic respiration, and cell wall and carbohydrate metabolism. Several transcription factors were identified that may control these shared processes in the postharvest berry. Changes representing both common and genotype-specific responses to postharvest conditions shed light on the cellular processes taking place in harvested berries stored under dehydrating conditions for several months.


Plant Science | 2009

Metabolomics of Daucus carota cultured cell lines under stressing conditions reveals interactions between phenolic compounds.

Stefania Ceoldo; Ketti Toffali; Silvia Mantovani; Greta Baldan; Marisa Levi; Flavia Guzzo

A metabolomic approach followed by principal components and partial least square analysis was used for investigating the effect of environmental factors on two Daucus carota L. cv. Flakkese cell lines (R3M and R4G), selected for their ability to produce anthocyanins in the light and the dark, respectively. A positive correlation between total anthocyanin, hydroxycinnamic and hydroxybenzoic acid accumulation was found in both lines. Furthermore, the experimental design and the combination of biochemical and statistical analyses allowed us to unravel complex relationships between environmental factors and phenylpropanoid composition. Among these, the induction by mechanical stress of overproduction of all anthocyanins, hydroxycinnamic and hydroxybenzoic acids except sinapic acid derivatives, whose accumulation was inhibited.


FEBS Letters | 2001

Pigment conformation and pigment–protein interactions in the reconstituted Lhcb4 antenna protein

Andy Pascal; Mirko Gastaldelli; Stefania Ceoldo; Roberto Bassi; Bruno Robert

Resonance Raman spectra of the native Lhcb4 antenna protein are compared with those of a recombinant protein prepared by in vitro refolding of its polypeptide, over‐expressed in Escherichia coli, with added pigments [Giuffra et al. (1996) Eur. J. Biochem. 238, 112–120]. The results indicate that the native pigment conformation is reproduced almost perfectly in the reconstituted protein, with only small differences which are attributed to a slight shift in the Soret absorption peak of two or more chlorophylls. This procedure therefore represents a model system for the investigation of site‐directed mutant LHC proteins, which are otherwise very difficult to obtain.


PLOS ONE | 2017

Multi-approach metabolomics analysis and artificial simplified phytocomplexes reveal cultivar-dependent synergy between polyphenols and ascorbic acid in fruits of the sweet cherry ( Prunus avium L.)

Mauro Commisso; Martino Bianconi; Flavia Di Carlo; Stefania Poletti; Alessandra Bulgarini; Francesca Munari; Stefano Negri; Matteo Stocchero; Stefania Ceoldo; Linda Avesani; Michael Assfalg; Gianni Zoccatelli; Flavia Guzzo

Fruits of the sweet cherry (Prunus avium L.) accumulate a range of antioxidants that can help to prevent cardiovascular disease, inflammation and cancer. We tested the in vitro antioxidant activity of 18 sweet cherry cultivars collected from 12 farms in the protected geographical indication region of Marostica (Vicenza, Italy) during two growing seasons. Multiple targeted and untargeted metabolomics approaches (NMR, LC-MS, HPLC-DAD, HPLC-UV) as well as artificial simplified phytocomplexes representing the cultivars Sandra Tardiva, Sandra and Grace Star were then used to determine whether the total antioxidant activity reflected the additive effects of each compound or resulted from synergistic interactions. We found that the composition of each cultivar depended more on genetic variability than environmental factors. Furthermore, phenolic compounds were the principal source of antioxidant activity and experiments with artificial simplified phytocomplexes indicated strong synergy between the anthocyanins and quercetins/ascorbic acid specifically in the cultivar Sandra Tardiva. Our data therefore indicate that the total antioxidant activity of sweet cherry fruits may originate from cultivar-dependent interactions among different classes of metabolite.


Journal of Visualized Experiments | 2016

The Terroir Concept Interpreted through Grape Berry Metabolomics and Transcriptomics

Silvia Dal Santo; Mauro Commisso; Erica D'Incà; Andrea Anesi; Matteo Stocchero; Sara Zenoni; Stefania Ceoldo; Giovanni Battista Tornielli; Mario Pezzotti; Flavia Guzzo

Terroir refers to the combination of environmental factors that affect the characteristics of crops such as grapevine (Vitis vinifera) according to particular habitats and management practices. This article shows how certain terroir signatures can be detected in the berry metabolome and transcriptome of the grapevine cultivar Corvina using multivariate statistical analysis. The method first requires an appropriate sampling plan. In this case study, a specific clone of the Corvina cultivar was selected to minimize genetic differences, and samples were collected from seven vineyards representing three different macro-zones during three different growing seasons. An untargeted LC-MS metabolomics approach is recommended due to its high sensitivity, accompanied by efficient data processing using MZmine software and a metabolite identification strategy based on fragmentation tree analysis. Comprehensive transcriptome analysis can be achieved using microarrays containing probes covering ~99% of all predicted grapevine genes, allowing the simultaneous analysis of all differentially expressed genes in the context of different terroirs. Finally, multivariate data analysis based on projection methods can be used to overcome the strong vintage-specific effect, allowing the metabolomics and transcriptomics data to be integrated and analyzed in detail to identify informative correlations.


Frontiers in Plant Science | 2016

Impact of Phenylpropanoid Compounds on Heat Stress Tolerance in Carrot Cell Cultures

Mauro Commisso; Ketti Toffali; Pamela Strazzer; Matteo Stocchero; Stefania Ceoldo; Barbara Baldan; Marisa Levi; Flavia Guzzo

The phenylpropanoid and flavonoid families include thousands of specialized metabolites that influence a wide range of processes in plants, including seed dispersal, auxin transport, photoprotection, mechanical support and protection against insect herbivory. Such metabolites play a key role in the protection of plants against abiotic stress, in many cases through their well-known ability to inhibit the formation of reactive oxygen species (ROS). However, the precise role of specific phenylpropanoid and flavonoid molecules is unclear. We therefore investigated the role of specific anthocyanins (ACs) and other phenylpropanoids that accumulate in carrot cells cultivated in vitro, focusing on their supposed ability to protect cells from heat stress. First we characterized the effects of heat stress to identify quantifiable morphological traits as markers of heat stress susceptibility. We then fed the cultures with precursors to induce the targeted accumulation of specific compounds, and compared the impact of heat stress in these cultures and unfed controls. Data modeling based on projection to latent structures (PLS) regression revealed that metabolites containing coumaric or caffeic acid, including ACs, correlate with less heat damage. Further experiments suggested that one of the cellular targets damaged by heat stress and protected by these metabolites is the actin microfilament cytoskeleton.


Plant Science | 2013

Carrot-specific features of the phenylpropanoid pathway identified by feeding cultured cells with defined intermediates.

Ketti Toffali; Stefania Ceoldo; Matteo Stocchero; Marisa Levi; Flavia Guzzo

Plants produce a vast array of secondary metabolites, many of which have important biological properties in animals when consumed as part of the diet. Interestingly, although the activities and benefits of plant secondary metabolites in animals are well established, comparatively little is known about the endogenous functions of these compounds in plants. One way to investigate the role of secondary products in plants is to modify the secondary metabolome and investigate the impact of such modifications on the phenotype. We have designed a novel feeding approach using different hydroxycinnamic acids (HCAs) and the cyanidin precursor dihydroquercetin (DHQ) to modify the metabolome of carrot R3M suspension cells. This strategy increased the accumulation of specific metabolites in a predictable way, and provided novel insights into the carrot phenylpropanoid pathway, suggesting that (a) cells use HCA hexose esters as substrates in the biosynthetic pathway leading to the accumulation of the various HCA derivatives and (b) p-coumaric acid derivative levels play a key roles in the regulation the flux of HCAs along the pathway. Moreover, this rapid strategy for metabolome modification does not depend on the availability of molecular tools or knowledge and can therefore be applied to any plant species.


Journal of Biological Chemistry | 2002

Biochemical Properties of the PsbS Subunit of Photosystem II Either Purified from Chloroplast or Recombinant

Paola Dominici; Stefano Caffarri; Franca Armenante; Stefania Ceoldo; Massimo Crimi; Roberto Bassi

Collaboration


Dive into the Stefania Ceoldo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge