Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania D'Atri is active.

Publication


Featured researches published by Stefania D'Atri.


Cancer Research | 2006

Immunization of Stage IV Melanoma Patients with Melan-A/MART-1 and gp100 Peptides plus IFN-α Results in the Activation of Specific CD8+ T Cells and Monocyte/Dendritic Cell Precursors

Tiziana Di Pucchio; Lorenzo Pilla; Imerio Capone; Maria Ferrantini; Enrica Montefiore; Francesca Urbani; Roberto Patuzzo; Elisabetta Pennacchioli; Mario Santinami; Agata Cova; Gloria Sovena; Claudia Lombardo; Arianna Lombardi; Patrizia Caporaso; Stefania D'Atri; Paolo Marchetti; Enzo Bonmassar; Giorgio Parmiani; Filippo Belardelli; Licia Rivoltini

The use of IFN-alpha in clinical oncology has generally been based on the rationale of exploiting its antiproliferative and antiangiogenic activities. However, IFN-alpha also exhibits enhancing effects on T-cell and dendritic cell functions, which may suggest a novel use as a vaccine adjuvant. We have carried out a pilot phase I-II trial to determine the effects of IFN-alpha, administered as an adjuvant of Melan-A/MART-1:26-35(27L) and gp100:209-217(210M) peptides, on immune responses in stage IV melanoma patients. In five of the seven evaluable patients, a consistent enhancement of CD8(+) T cells recognizing modified and native MART-1 and gp100 peptides and MART-1(+)gp100(+) melanoma cells was observed. Moreover, vaccination induced an increase in CD8(+) T-cell binding to HLA tetramers containing the relevant peptides and an increased frequency of CD45RA(+)CCR7(-) (terminally differentiated effectors) and CD45RA(-)CCR7(-) (effector memory) cells. In all patients, treatment augmented significantly the percentage of CD14(+) monocytes and particularly of the CD14(+)CD16(+) cell fraction. An increased expression of CD40 and CD86 costimulatory molecules in monocytes was also observed. Notably, postvaccination monocytes from two of the three patients showing stable disease or long disease-free survival showed an enhanced antigen-presenting cell function and capability to secrete IP10/CXCL10 when tested in mixed leukocyte reaction assays, associated to a boost of antigen and melanoma-specific CD8(+) T cells. Although further clinical studies are needed to show the adjuvant activity of IFN-alpha, the present data represent an important starting point for considering a new clinical use of IFN-alpha and new immunologic end points, potentially predictive of clinical response.


Cancer | 2003

Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases.

Cataldo Schietroma; Francesca Cianfarani; Pedro M. Lacal; Teresa Odorisio; Angela Orecchia; Jean Kanitakis; Stefania D'Atri; Cristina M. Failla; Giovanna Zambruno

Melanoma metastasizes by different mechanisms comprising direct invasion of the surrounding tissue and spreading via the lymphatic or vascular system. Despite their clinical relevance, the molecular mechanisms that guide the route of spreading and localization of the metastases in different tissues are not well known. Recent studies in different tumor types have shown that vascular endothelial growth factor‐C (VEGF‐C), which displays a high specificity for lymphatic endothelium, is involved in tumor‐induced lymphangiogenesis and lymphatic metastatic spread. The authors studied the expression of VEGF‐C in cultured human melanoma cells derived from cutaneous and lymph node metastases as well as in metastatic melanoma tissue specimens to assess a possible involvement of this growth factor in lymph node localization of melanoma metastases.


Molecular Pharmacology | 2008

AKT Is Activated in an Ataxia-Telangiectasia and Rad3-Related-Dependent Manner in Response to Temozolomide and Confers Protection against Drug-Induced Cell Growth Inhibition

Simona Caporali; Lauretta Levati; Giuseppe Starace; Gianluca Ragone; Enzo Bonmassar; Ester Alvino; Stefania D'Atri

The phosphatidylinositol 3-kinase/AKT pathway is activated frequently in human cancer, and it has been implicated in tumor cell proliferation, survival, and chemoresistance. In this study, we addressed the role of AKT in cellular responses to the therapeutic methylating agent temozolomide (TMZ), and we investigated the possible link between TMZ-induced modulation of AKT function and activation of ataxia-telangiectasia and Rad3-related (ATR)- and ataxia telangiectasia mutated (ATM)-dependent signaling pathways. We found that clinically relevant concentrations of TMZ caused activation of endogenous AKT in lymphoblastoid cells, and in colon and breast cancer cells, and that this molecular event required a functional mismatch repair system. Transfection of a dominant-negative kinase-dead form of AKT1 into breast cancer cells abrogated TMZ-induced activation of endogenous AKT, and it markedly enhanced cell sensitivity to the drug. Likewise, exposure of the MMR-proficient cell lines to the AKT inhibitor d-3-deoxy-2-O-methyl-myo inositol 1-[(R)-2-methoxy-3-(octadecyloxy)-propyl hydrogen phosphate] (SH-5) impaired AKT phosphorylation in response to TMZ, and it significantly increased cell chemosensitivity. Furthermore, small interfering RNA (siRNA)-mediated reduction of AKT1 expression in colon cancer cells potentiated the growth inhibitory effects of TMZ. Inhibition of ATM expression in colon cancer cells by siRNA did not impair TMZ-induced activation of AKT, whereas siRNA-mediated inhibition of ATR prevented AKT activation in response to the drug and increased cell chemosensitivity. These results strongly support the hypothesis that clinical benefit could be obtained by combining TMZ with inhibitors of the AKT pathway. Moreover, they provide the first evidence of a novel function of ATR as an upstream activator of AKT in response to DNA damage induced by O6-guanine-methylating agents.


Pigment Cell & Melanoma Research | 2011

MicroRNA‐155 targets the SKI gene in human melanoma cell lines

Lauretta Levati; Elena Pagani; Sveva Romani; D. Castiglia; Eugenia Piccinni; Claudia Covaciu; Patrizia Caporaso; Sergio Bondanza; Francesca Romana Antonetti; Enzo Bonmassar; Fabio Martelli; Ester Alvino; Stefania D'Atri

The SKI protein is a transcriptional coregulator over‐expressed in melanoma. Experimentally induced down‐regulation of SKI inhibits melanoma cell growth in vitro and in vivo. MicroRNAs (miRNAs) negatively modulate gene expression and have been implicated in oncogenesis. We previously showed that microRNA‐155 (miR‐155) is down‐regulated in melanoma cells as compared with normal melanocytes and that its ectopic expression impairs proliferation and induces apoptosis. Here, we investigated whether miR‐155 could mediate melanoma growth inhibition via SKI gene silencing. Luciferase reporter assays demonstrated that miR‐155 interacted with SKI 3′UTR and impaired gene expression. Transfection of melanoma cells with miR‐155 reduced SKI levels, while inhibition of endogenous miR‐155 up‐regulated SKI expression. Specifically designed small interfering RNAs reduced SKI expression and inhibited proliferation. However, melanoma cells over‐expressing a 3′UTR‐deleted SKI were still susceptible to the antiproliferative effect of miR‐155. Our data demonstrate for the first time that SKI is a target of miR‐155 in melanoma. However, impairment of SKI expression is not the leading mechanism involved in the growth‐suppressive effect of miR‐155 found in this malignancy.


Genes, Chromosomes and Cancer | 1998

Mutation of the mismatch repair gene hMSH2 and hMSH6 in a human T-cell leukemia line tolerant to methylating agents.

Lauretta Levati; Giancarlo Marra; Teresa Lettieri; Stefania D'Atri; Patrizia Vernole; Lucio Tentori; Pedro Miguel Lacal; Elena Pagani; Enzo Bonmassar; Josef Jiricny; Grazia Graziani

Cell killing by monofunctional methylating agents is due mainly to the formation of adducts at the O6 position of guanine. These methyl adducts are removed from DNA by the O6‐alkylguanine DNA alkyltransferase (OGAT). The mechanism by which O6‐methylguanine (O6meG) induces cell death in OGAT‐deficient cells requires a functional mismatch repair system (MRS). We have previously reported that depletion of OGAT activity in the human T‐cell leukemic Jurkat line does not sensitize these cells to the cytotoxic and apoptotic effects of the methylating triazene temozolomide (Tentori et al., 1995). We therefore decided to establish whether the tolerance of Jurkat cells to O6meG could be associated with a defect in MRS. The results of mismatch repair complementation studies indicated that Jurkat cells are defective in hMutSα, a heterodimer of the hMSH2 and hMSH6 proteins. Cytogenetic analysis of two Jurkat clones revealed a deletion in the short arm of chromosome region 2p15–21, indicating an allelic loss of both hMSH2 and hMSH6 genes. DNA sequencing revealed that exon 13 of the second hMSH2 allele contains a base substitution at codon 711, which changes an arginine to a termination codon (CGA→TGA). In addition, a (C)8→(C)7 frameshift mutation in codon 1085–1087 of the hMSH6 gene was also found. Although both hMSH2 and hMSH6 transcripts could be detected in Jurkat clones, the respective polypeptides were absent. Taken together, these data indicate that tolerance of Jurkat cells to methylation damage is linked to a loss of functional hMutSα. Genes Chromosomes Cancer 23:159–166, 1998.


British Journal of Dermatology | 2007

Molecular alterations at chromosome 9p21 in melanocytic naevi and melanoma

Maria Cristina Sini; Antonella Manca; Annalisa Cossu; Marilena Budroni; Gerardo Botti; Paolo Antonio Ascierto; Francesco Cremona; Antonio Muggiano; Stefania D'Atri; Milena Casula; Paola Baldinu; Grazia Palomba; Amelia Lissia; Francesco Tanda; Giuseppe Palmieri

Background  The chromosome 9p21 and its CDKN locus, with the p16 tumour suppressor gene (CDKN2A), are recognized as the genomic regions involved in the pathogenesis of melanoma.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Tolerance of human MSH2+/- lymphoblastoid cells to the methylating agent temozolomide.

Giancarlo Marra; Stefania D'Atri; Chantal Corti; Laura Bonmassar; Maria Sofia Cattaruzza; Pascal Schweizer; Karl Heinimann; Zdena Bartosova; Minna Nyström-Lahti; Josef Jiricny

Members of hereditary nonpolyposis colon cancer (HNPCC) families harboring heterozygous germline mutations in the DNA mismatch repair genes hMSH2 or hMLH1 present with tumors generally two to three decades earlier than individuals with nonfamilial sporadic colon cancer. We searched for phenotypic features that might predispose heterozygous cells from HNPCC kindreds to malignant transformation. hMSH2+/− lymphoblastoid cell lines were found to be on average about 4-fold more tolerant than wild-type cells to killing by the methylating agent temozolomide, a phenotype that is invariably linked with impairment of the mismatch repair system. This finding was associated with an average 2-fold decrease of the steady-state level of hMSH2 protein in hMSH2+/− cell lines. In contrast, hMLH1+/− heterozygous cells were indistinguishable from normal controls in these assays. Thus, despite the fact that HNPCC families harboring mutations in hMSH2 or hMLH1 cannot be distinguished clinically, the early stages of the carcinogenic process in hMSH2 and hMLH1 mutation carriers may be different. Should hMSH2+/− colonocytes and lymphoblasts harbor a similar phenotype, the increased tolerance of the former to DNA-damaging agents present in the human colon may play a key role in the initiation of the carcinogenic process.


International Journal of Oncology | 2013

Neuropilin-1 expression promotes invasiveness of melanoma cells through vascular endothelial growth factor receptor-2-dependent and -independent mechanisms

Federica Ruffini; Stefania D'Atri; Pedro Miguel Lacal

The majority of human melanoma cell lines secretes vascular endothelial growth factor-A (VEGF-A) and expresses its receptors VEGFR-1, VEGFR-2 and neuropilin-1 (NRP‑1), a co-receptor for VEGF-A that amplifies the signalling through VEGFR-2. Since it is known that the VEGF-A/VEGFR-2 autocrine loop promotes melanoma cell invasiveness, the aim of the present study was to investigate the involvement of NPR-1 in melanoma progression. Syngeneic human melanoma cell lines expressing either VEGFR-2 or NRP-1, both or none of them, were analyzed for their in vitro ability to migrate, invade the extracellular matrix (ECM) and secrete active metalloproteinase-2 (MMP-2). The results indicate that NRP-1 cooperates with VEGFR-2 in melanoma cell migration induced by VEGF-A. Moreover, NRP-1 expression is sufficient to promote MMP-2 secretion and melanoma cell invasiveness, as demonstrated by the ability of cells expressing solely NRP-1 to spontaneously invade the ECM. This ability is specifically downregulated by anti-NRP-1 antibodies or by interfering with NRP-1 expression using an shRNA construct. Investigation of the signal transduction pathways triggered by NRP-1 in melanoma cells, indicated that NRP-1-dependent promotion of cell invasiveness involves Akt activation through its phosphorylation on T308. Overall, the results demonstrate that NRP-1 is involved in melanoma progression through VEGFR-2-dependent and -independent mechanisms and suggest NRP-1 as a target for the treatment of the metastatic disease.


Blood | 2008

A proangiogenic peptide derived from vascular endothelial growth factor receptor-1 acts through α5β1 integrin

Simonetta Soro; Angela Orecchia; Lucia Morbidelli; Pedro Miguel Lacal; Veronica Morea; Kurt Ballmer-Hofer; Federica Ruffini; Marina Ziche; Stefania D'Atri; Giovanna Zambruno; Anna Tramontano; Cristina Maria Failla

Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase receptor for growth factors of the VEGF family. Endothelial cells express a membrane-bound and a soluble variant of this protein, the latter being mainly considered as a negative regulator of VEGF-A signaling. We previously reported that the soluble form is deposited in the extracellular matrix produced by endothelial cells in culture and is able to promote cell adhesion and migration through binding to alpha5beta1 integrin. In this study, we demonstrate that the Ig-like domain II of VEGFR-1, which contains the binding determinants for the growth factors, is involved in the interaction with alpha5beta1 integrin. To identify domain regions involved in integrin binding, we designed 12 peptides putatively mimicking the domain II surface and tested their ability to inhibit alpha5beta1-mediated endothelial cell adhesion to soluble VEGFR-1 and directly support cell adhesion. One peptide endowed with both these properties was identified and shown to inhibit endothelial cell migration toward soluble VEGFR-1 as well. This peptide directly binds alpha5beta1 integrin, but not VEGF-A, inducing endothelial cell tubule formation in vitro and neoangiogenesis in vivo. Alanine scanning mutagenesis of the peptide defined which residues were responsible for its biologic activity and integrin binding.


Genes, Chromosomes and Cancer | 2008

Concomitant activation of Wnt pathway and loss of mismatch repair function in human melanoma

Daniele Castiglia; Silvia Bernardini; Ester Alvino; Elena Pagani; Naomi De Luca; Sabrina Falcinelli; Alberto Pacchiarotti; Enzo Bonmassar; Giovanna Zambruno; Stefania D'Atri

Constitutive activation of the Wnt pathway plays a key role in the development of colorectal cancer and has also been implicated in the pathogenesis of other malignancies. Deregulation of Wnt signaling mainly occurs through genetic alterations of APC, the β‐catenin gene (CTNNB1), AXIN1 and AXIN2, leading to stabilization of β‐catenin. Physiologically, AXIN2 is transcriptionally induced on Wnt signaling activation and acts as a negative feedback regulator of the pathway. In colorectal cancer, mutations in CTNNB1 and AXIN2 occur preferentially in tumors with inactivation of the mismatch repair (MMR) genes MSH2, MLH1, or PMS2. In this study, the expression of β‐catenin and AXIN2, and the mutational status of CTNNB1, APC, and AXIN2 were evaluated in two MMR‐deficient (PR‐Mel and MR‐Mel) and seven MMR‐proficient human melanoma cell lines. Only PR‐Mel and MR‐Mel cells showed nuclear accumulation of β‐catenin and expression of the AXIN2 gene, and hence, constitutive activation of Wnt signaling. Mutational analysis identified a somatic heterozygous missense mutation in CTNNB1 exon three and a germline heterozygous deletion within AXIN2 exon seven in PR‐Mel cells, and a somatic biallelic deletion within APC in MR‐Mel cells. Deregulation of Wnt signaling and a defective MMR system were also present in the original tumor of PR and MR patients. Thus, we describe additional melanomas with mutations in CTNNB1 and APC, identify for the first time a germline AXIN2 mutation in a melanoma patient and suggest that inactivation of the MMR system and deregulation of the Wnt/β‐catenin signaling pathway cooperate to promote melanoma development and/or progression.

Collaboration


Dive into the Stefania D'Atri's collaboration.

Top Co-Authors

Avatar

Pedro Miguel Lacal

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Enzo Bonmassar

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Grazia Graziani

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Ester Alvino

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Lucio Tentori

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanna Zambruno

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelo Aquino

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge