Stefania Gelmini
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefania Gelmini.
The FASEB Journal | 2009
Silvana Baglioni; Michela Francalanci; Roberta Squecco; Adriana Lombardi; Giulia Cantini; Roberta Angeli; Stefania Gelmini; Daniele Guasti; Susanna Benvenuti; Francesco Annunziato; Daniele Bani; Francesco Liotta; Fabio Francini; Giuliano Perigli; Mario Serio; Michaela Luconi
Adipose tissue is a dynamic endocrine organ with a central role in metabolism regulation. Functional differences in adipose tissue seem associated with the regional distribution of fat depots, in particular in subcutaneous and visceral omental pads. Here, we report for the first time the isolation of human adipose‐derived adult stem cells from visceral omental and subcutaneous fat (V‐ASCs and S‐ASCs, respectively) from the same subject. Immunophenotyping shows that plastic culturing selects homogeneous cell populations of V‐ASCs and S‐ASCs from the corresponding stromal vascular fractions (SVFs), sharing typical markers of mesenchymal stem cells. Electron microscopy and electrophysiological and real‐time RT‐PCR analyses confirm the mesenchymal stem nature of both V‐ASCs and S‐ASCs, while no significant differences in a limited pattern of cytokine/chemokine expression can be detected. Similar to S‐ASCs, V‐ASCs can differentiate in vitro toward adipogenic, osteogenic, chondrogenic, muscular, and neuronal lineages, as demonstrated by histochemical, immunofluorescence, real‐time RT‐PCR, and electrophysiological analyses, suggesting the multipotency of such adult stem cells. Our data demonstrate that both visceral and subcutaneous adipose tissues are a source of pluripotent stem cells with multigermline potential. However, the visceral rather than the subcutaneous ASC could represent a more appropriate in vitro cell model for investigating the molecular mechanisms implicated in the pathophysiology of metabolic disorders such as obesity.—Baglioni, S., Francalanci, M., Squecco, R., Lombardi, A., Cantini, G., Angeli, R., Gelmini, S., Guasti, D., Benvenuti, S., Annunziato, F., Bani, D., Liotta, F., Francini, F., Perigli, G., Serio, M., Luconi, M. Characterization of human adult stem‐cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J. 23, 3494–3505 (2009). www.fasebj.org
Hepatology | 2007
Alessandra Caligiuri; C. Bertolani; Cristina Tosti Guerra; Sara Aleffi; S. Galastri; Marco Trappoliere; Francesco Vizzutti; Stefania Gelmini; Giacomo Laffi; Massimo Pinzani; Fabio Marra
Adiponectin limits the development of liver fibrosis and activates adenosine monophosphate–activated protein kinase (AMPK). AMPK is a sensor of the cellular energy status, but its possible modulation of the fibrogenic properties of hepatic stellate cells (HSCs) has not been established. In this study, we investigated the role of AMPK activation in the biology of activated human HSCs. A time‐dependent activation of AMPK was observed in response to a number of stimuli, including globular adiponectin, 5‐aminoimidazole‐4‐carboxamide‐1‐beta‐4‐ribofuranoside (AICAR), or metformin. All these compounds significantly inhibited platelet‐derived growth factor (PDGF)‐stimulated proliferation and migration of human HSCs and reduced the secretion of monocyte chemoattractant protein‐1. In addition, AICAR limited the secretion of type I procollagen. Knockdown of AMPK by gene silencing increased the mitogenic effects of PDGF, confirming the negative modulation exerted by this pathway on HSCs. AMPK activation did not reduce PDGF‐dependent activation of extracellular signal‐regulated kinase (ERK) or Akt at early time points, whereas a marked inhibition was observed 24 hours after addition of PDGF, reflecting a block in cell cycle progression. In contrast, AICAR blocked short‐term phosphorylation of ribosomal S6 kinase (p70S6K) and 4E binding protein‐1 (4EBP1), 2 downstream effectors of the mammalian target of rapamycin (mTOR) pathway, by PDGF. The ability of interleukin‐a (IL‐1) to activate nuclear factor kappa B (NF‐κB) was also reduced by AICAR. Conclusion: Activation of AMPK negatively modulates the activated phenotype of HSCs. (HEPATOLOGY 2007.)
Journal of Endocrinological Investigation | 2008
Stefania Gelmini; Monica Mangoni; Mario Serio; Paola Romagnani; Elena Lazzeri
Chemokines exert their multifunctional role in several physiologic and pathologic processes through interaction with their specific receptors. Much evidence have revealed that metastatic spread tumor cells may use chemokinemediated mechanisms. In particular, an involvement of stromal cell-derived factor-1 (SDF-1) in growth of primary tumors and in metastatic process has been demonstrated. Indeed, it has been suggested that CXCR4 expression by tumor cells, plays a critical role in cell metastasis by a chemotactic gradient to organs expressing the ligand SDF-1. Moreover, CXCR4 overexpression correlated with poor prognosis in many types of cancer. In physiologic condition, SDF-1 also plays an essential role modulating stem cell proliferation, survival, and homing through its canonical receptor CXCR4. Recently, several studies have demonstrated the existence of a small subset of cancer cells which share many characteristics with stem cells and named cancer stem cells (CSC). They constitute a reservoir of self-sustaining cells with the ability to maintain the tumor growth. In particular, most of them express CXCR4 receptor and respond to a chemotactic gradient of its specific ligand SDF-1, suggesting that CSC probably represent a subpopulation capable of initiating metastasis. This review focuses on the role of SDF-1/CXCR4 axis in cancer and in the metastatic progression by tumoral cells, as well as the role of CSC in tumor pathogenesis and in metastatic process. A better understanding of migratory mechanism involving cancer cells and CSC provides a powerful tool for developing novel therapies reducing both local and distant recurrences.
Methods | 2013
Serena Vinci; Stefania Gelmini; Irene Mancini; Francesca Malentacchi; Mario Pazzagli; Cristina Beltrami; Pamela Pinzani; Claudio Orlando
Studies on miRNA profiling revealed that a large number of them are significantly deregulated in human cancers. The molecular mechanisms of this deregulation are not totally clarified, even if genetics and epigenetics are frequently involved. Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation in the human genome. A SNP into miRNA gene might affect the transcription of primary miRNA, its processing and miRNA-mRNA interaction. We investigated the distribution of sequence variants of miR-146a, miR-196a2, miR-499 and miR-149 in colorectal cancer (CRC) and their effect on miRNA expression. Each variant was identified with HRM. For miR-499 we demonstrated a significant reduction of its expression in CRC connected to a specific genotype. To evaluate the epigenetic effects on miRNA genes in CRC, we investigated the influence of DNA methylation on miR-34b, miR-34c and miR-9-1 expression. We aimed to verify the relationship between the methylation status of these miRNA genes and their relative expression in tumor samples. For the quantification of DNA methylation we adopted a method based on Differential High Resolution Melting (D-HRM).
Clinical Chemistry and Laboratory Medicine | 2011
Serena Vinci; Stefania Gelmini; Nicola Pratesi; Simona Conti; Francesca Malentacchi; Lisa Simi; Mario Pazzagli; Claudio Orlando
Abstract Background: The presence of sequence variants in miRNA genes may influence their processing, expression and binding to target mRNAs. Since single miRNA can have a large number of potential mRNA targets, even minor variations in its expression can have influences on hundreds of putative mRNAs. Methods: Here, we evaluated 101 paired samples (cancer and normal tissues) from non-small cell lung carcinoma (NSCLC) patients to study the genotype distribution of single nucleotide polymorphisms (SNPs) in miR-146a (rs2910164 C-G), miR-149 (rs2292832 C-T), miR-196a2 (rs11614913 C-T) and miR-499 (rs3746444 G-A) and their influence on the expression of respective miRNAs. Results: Relative expression of miR-146a, miR-149 and miR-499 were comparable in NSCLC and in paired control tissues. On the contrary, we clearly detected a significant increase (p<0.001) of miR-196a2 expression in NSCLC. In particular we found a significant association between miR-196a2 CC genotype and high expression, whereas TT geno-type showed a very low expression in comparison to both CT (p<0.005) and CC patients (p<0.01). We did not find any association between miR-149, miR-196a2 and miR-499 genotype and risk of NSCLC. Conversely, CG genotype of miR-146a appeared associated to an increased risk for NSCLC (p=0.042 and 1.77 OR). Conclusions: Our results seem to demonstrate that sequence variants of miR-196a2 can have an influence on its expression, while miR-146a can have a role in increasing the risk of NSCLC.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2008
Adriana Lombardi; Giulia Cantini; Elisabetta Piscitelli; Stefania Gelmini; Michela Francalanci; Tommaso Mello; E. Ceni; Gabriele Varano; Gianni Forti; Mario Rotondi; Andrea Galli; Mario Serio; Michaela Luconi
Objective—Microvascular endothelium is one of the main targets of the inflammatory response. On specific activation, endothelial cells recruit Th1-lymphocytes at the inflammatory site. We investigated the intracellular signaling mediating tumor necrosis factor (TNF)-α and interferon (IFN)-γ inflammatory response in human microvascular endothelial cells (HMEC-1) and the interfering effects of the peroxisome-proliferator-activated-receptor (PPARγ) agonist, rosiglitazone (RGZ). Methods and Results—TNFα and IFNγ, mainly when combined, stimulate IFNγ-inducible protein of 10 kDa (IP10) and fractalkine production evaluated by ELISA and TaqMan analyses. This effect is not only mediated by activation of the NFkB and Stat1 classic pathways, but also involves a rapid increase in phosphorylation and activation of extracellular signal-regulated kinases (ERK1/2) as measured by Western blot. RGZ interferes with TNFα and IFNγ stimulation of IP10, fractalkine, and adhesion molecule through a novel rapid mechanism which involves the blocking of ERK activation. Conclusions—Our findings shed new light on the mechanisms underlying the inflammatory response of microvascular endothelium and on the possible therapeutic use of RGZ in vasculopathies involving Th1-responses.
The Journal of Urology | 2001
Claudio Orlando; Stefania Gelmini; Cesare Selli; Mario Pazzagli
PURPOSEnTelomerase is a ribonucleoprotein enzyme that compensates for the progressive erosion of chromosomal ends, called telomeres. In most somatic cells telomerase expression is repressed and telomeres progressively shorten after each cell division, causing cell senescence. Conversely telomerase is active in most human cancers, maintaining the integrity of chromosome ends and representing an important step in cell immortalization and carcinogenesis. The large and increasing interest in telomerase was motivated by the demonstration that more than 90% of human cancers are telomerase positive, whereas most normal tissues or benign tumors contained low or undetectable telomerase activity. We addressed the most recent data on telomerase detection in urological malignancy. Approaches to telomerase inhibition as a future anti-cancer therapy are also discussed.nnnMATERIALS AND METHODSnWe comprehensively reviewed the most recent and significant publications in this field using current issues of specific journals and a MEDLINE search.nnnRESULTSnTelomerase is often expressed in bladder (90%), prostate (80%) and renal (69%) carcinoma. A variable but significant percent of normal tissues from tumor adjacent zones or noncancer samples are positive for telomerase. The clinical role of telomerase is still questionable in renal cancer, while important insights into the diagnostic role of telomerase in bladder and prostate carcinoma are increasing. Telomerase detection in exfoliated cells collected with urine or bladder washings seems a promising tool for the diagnosis and management of bladder cancer.nnnCONCLUSIONSnLarger perspective studies of larger groups of patients are required to discover an appropriate role for telomerase when assessing these tumors. The improvement of quantitative methods to evaluate the expression of telomerase is a cornerstone in the complete clarification of the clinical relevance of telomerase.
Cell Research | 2009
Tania Fiaschi; Domenico Cirelli; Giuseppina Comito; Stefania Gelmini; Giampietro Ramponi; Mario Serio; Paola Chiarugi
The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrophies, muscular atrophy, and cachexia. Studies focused on the ability of extracellular factors to promote myogenesis are therefore highly promising. We now report that an adipocyte-derived factor, globular adiponectin (gAd), is able to induce muscle gene expression and cell differentiation. gAd, besides its well-known ability to regulate several metabolic functions in muscle, including glucose uptake and consumption and fatty acid catabolism, is able to block cell cycle entry of myoblasts, to induce the expression of specific skeletal muscle markers such as myosin heavy chain or caveolin-3, as well as to provoke cell fusion into multinucleated syncytia and, finally, muscle fibre formation. gAd exerts its pro-differentiative activity through redox-dependent activation of p38, Akt and 5′-AMP-activated protein kinase pathways. Interestingly, differentiating myoblasts are autocrine for adiponectin, and the mimicking of pro-inflammatory settings or exposure to oxidative stress strongly increases the production of the hormone from differentiating cells. These data suggest a novel function of adiponectin, directly coordinating the myogenic differentiation program and serving an autocrine function during skeletal myogenesis.
Endocrinology | 2008
Elisa Borgogni; Erica Sarchielli; Mariangela Sottili; Veronica Santarlasci; Lorenzo Cosmi; Stefania Gelmini; Adriana Lombardi; Giulia Cantini; Giuliano Perigli; Michaela Luconi; Gabriella Barbara Vannelli; Francesco Annunziato; Luciano Adorini; Mario Serio; Clara Crescioli
T-helper 1 (Th1) cell-mediated inflammatory responses predominate in the early pathogenesis of Graves disease (GD), whereas Th2 cell-mediated immunity may play a role in later stages. The chemokine CXCL10 and its receptor CXCR3 are expressed in most thyroid glands of early GD patients. Circulating CXCL10 levels inversely correlate with disease duration; CXCL10 maximal expression also correlates with interferon (IFN)gamma levels in recent GD onset. Methimazole (MMI) reduces CXCL10 secretion by isolated thyrocytes, decreases serum CXCL10 levels, and promotes a transition from Th1 to Th2 dominance in patients in GD active phase. Vitamin D receptor agonists exhibit antiinflammatory properties and promote tolerance induction. We investigated the effects and the mechanism of action of a nonhypercalcemic vitamin D receptor agonist, elocalcitol (BXL-628), compared with MMI on CXCL10 secretion induced by proinflammatory cytokines. Furthermore, we studied the effects of both drugs on Th1, Th17, and Th2 cytokine secretion in CD4+ T cells. ELISA, cytometry, immunocytochemistry, Western blot, and quantitative real-time PCR were used for protein and gene analysis. In human thyrocytes, elocalcitol inhibited IFNgamma and TNFalpha-induced CXCL10 protein secretion more potently than MMI. Elocalcitol impaired both cytokine intracellular pathways, whereas MMI was effective only on the IFNgamma pathway. In CD4+ T cells, elocalcitol decreased Th1- and Th17-type cytokines, and promoted Th2-type cytokine secretion. Elocalcitol and MMI inhibited Th1 cytokine-mediated responses in thyrocytes and CD4+ T cells. In addition, elocalcitol promoted a shift toward a Th2 response. In conclusion, elocalcitol could represent a novel pharmacological tool in the treatment of autoimmune thyroid diseases.
Journal of Endocrinology | 2007
Clara Crescioli; Lorenzo Cosmi; Elisa Borgogni; Veronica Santarlasci; Stefania Gelmini; Mariangela Sottili; Erica Sarchielli; Benedetta Mazzinghi; Michela Francalanci; Anna Pezzatini; Giuliano Perigli; Gabriella Barbara Vannelli; Francesco Annunziato; Mario Serio
CXC chemokine ligand 10 (CXCL10) plays a pivotal role in the self-perpetuation of the inflammatory processes in patients with autoimmune thyroid disease. Treatment with methimazole (MMI) reduces serum CXCL10 in patients with Graves disease. In isolated human thyrocytes, tumor necrosis factor (TNF)alpha demonstrates a potent synergistic effect on interferon (IFN)gamma-induced CXCL10 secretion. We investigated the mechanism underlying the synergism between IFNgamma and TNFalpha and the effect of MMI on CXCL10 secretion in human thyrocytes. A peroxisome proliferator-activated receptor gamma agonist, rosiglitazone (RGZ), a known inhibitor of T helper 1 (Th1)-mediated responses, was also studied for comparison. Experiments were carried out in human thyrocytes isolated from internodular parenchyma of thyroid tissues derived from patients who had undergone surgery for multinodular goiter. ELISA was used to measure CXCL10 levels in culture supernatant. Flow cytometry was used to assess IFNgamma membrane receptor expression. Specific mRNA analysis was performed by Taqman real-time PCR. Immunofluorescence was performed to detect nuclear translocation of nuclear factor-kappaB (NF-kappaB). In human thyrocytes, the synergistic effect of TNFalpha with IFNgamma on CXCL10 secretion is due to the upregulation of IFNgamma receptor expression. MMI decreased cytokine-induced CXCL10 secretion by reducing TNFalpha-induced upregulation of the IFNgamma receptor. RGZ decreased the cytokine-induced CXCL10 secretion by impairing NF-kappaB translocation, without affecting IFNgamma receptor. MMI and RGZ targeted thyrocytes with the same pharmacological potency, likely acting throughout different mechanisms. Targeting T helper 1-mediated autoimmune thyroid disease with drugs that impair different intracellular pathways could be a novel pharmacological tool.