Stefania Gobessi
International Centre for Genetic Engineering and Biotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefania Gobessi.
Blood | 2014
Jennifer A. Woyach; Engin Bojnik; Amy S. Ruppert; Matthew R. Stefanovski; Virginia M. Goettl; Kelly A. Smucker; Lisa L. Smith; Jason A. Dubovsky; William H. Towns; Jessica MacMurray; Bonnie K. Harrington; Melanie E. Davis; Stefania Gobessi; Luca Laurenti; Betty Y. Chang; Joseph J. Buggy; Dimitar G. Efremov; John C. Byrd; Amy J. Johnson
Chronic lymphocytic leukemia (CLL) is characterized by constitutive activation of the B-cell receptor (BCR) signaling pathway, but variable responsiveness of the BCR to antigen ligation. Brutons tyrosine kinase (BTK) shows constitutive activity in CLL and is the target of irreversible inhibition by ibrutinib, an orally bioavailable kinase inhibitor that has shown outstanding activity in CLL. Early clinical results in CLL with other reversible and irreversible BTK inhibitors have been less promising, however, raising the question of whether BTK kinase activity is an important target of ibrutinib and also in CLL. To determine the role of BTK in CLL, we used patient samples and the Eμ-TCL1 (TCL1) transgenic mouse model of CLL, which results in spontaneous leukemia development. Inhibition of BTK in primary human CLL cells by small interfering RNA promotes apoptosis. Inhibition of BTK kinase activity through either targeted genetic inactivation or ibrutinib in the TCL1 mouse significantly delays the development of CLL, demonstrating that BTK is a critical kinase for CLL development and expansion and thus an important target of ibrutinib. Collectively, our data confirm the importance of kinase-functional BTK in CLL.
Blood | 2012
Roberto Negro; Stefania Gobessi; Pablo G. Longo; Yantao He; Zhong Yin Zhang; Luca Laurenti; Dimitar G. Efremov
A polymorphic variant of the phosphatase PTPN22 has been associated with increased risk for multiple autoimmune diseases. The risk allele is thought to function by diminishing antigen-receptor signals responsible for negative selection of autoreactive lymphocytes. We now show that PTPN22 is markedly overexpressed in chronic lymphocytic leukemia (CLL), a common malignancy of autoreactive B lymphocytes. We also show that overexpression of PTPN22 significantly inhibits antigen-induced apoptosis of primary CLL cells by blocking B-cell receptor (BCR) signaling pathways that negatively regulate lymphocyte survival. More importantly, we show that PTPN22 positively regulates the antiapoptotic AKT kinase, which provides a powerful survival signal to antigen-stimulated CLL cells. This selective uncoupling of AKT from other downstream BCR signaling pathways is a result of inhibition of a negative regulatory circuit involving LYN, CD22, and SHIP. Finally, we show that PTPN22 can be effectively down-regulated by the PKC inhibitors ruboxistaurin and sotrastaurin, resulting in enhanced killing of CLL cells exposed to proapoptotic BCR stimuli. Collectively, these data suggest that PTPN22 overexpression represents a protective mechanism that allows autoantigen-activated CLL cells to escape from negative selection and indicate that this mechanism could be exploited for therapeutic purposes by targeting PTPN22 with PKC inhibitors.
Cellular Signalling | 2009
Laura Carsetti; Luca Laurenti; Stefania Gobessi; Pablo G. Longo; Giuseppe Leone; Dimitar G. Efremov
The Syk kinase is regarded as a promising target for the treatment of antigen-driven B-cell malignancies, considering its essential role in propagating antigenic stimuli through the B-cell receptor (BCR). In certain common B-cell malignancies Syk is activated even in the absence of BCR engagement, suggesting a wider role for this kinase in lymphomagenesis. In this paper, we have profiled molecular differences between BCR-induced and constitutive Syk activation in terms of phosphorylation of regulatory tyrosine residues, downstream signaling properties and capacity to sustain B-cell proliferation. Analysis of primary chronic lymphocytic leukemia B-cells and diffuse large B-cell lymphoma cell lines revealed that constitutive and BCR-induced Syk activation differ with respect to the phosphorylation status of the regulatory tyrosines at positions 352 and 525/526, with only the first site being phosphorylated in the case of constitutive and both sites in the case of BCR-induced Syk activation. Syk phosphorylated only on Y352 is capable of downstream signaling, as evidenced by experiments with a phosphomimetic mutant in which the activation loop tyrosines (YY525/526) were replaced with phenylalanines. However, phosphorylation at YY525/526 was shown to significantly increase the enzymatic activity of Syk and to be required for sustained PLCgamma2, Akt and ERK signaling as well as B-cell transformation. These data demonstrate that constitutively active Syk and Syk activated by BCR crosslinking represent separate stages of Syk activation with distinct signaling properties and transforming capacities.
Blood | 2016
Kamil Bojarczuk; Binu K Sasi; Stefania Gobessi; Idanna Innocenti; Gabriele Pozzato; Luca Laurenti; Dimitar G. Efremov
The Bcl-2 antagonist ABT-199 (venetoclax) has demonstrated promising clinical activity in patients with chronic lymphocytic leukemia (CLL). ABT-199 is strongly cytotoxic against unstimulated peripheral blood CLL cells in vitro but is much less effective against CLL cells that have received survival signals from the microenvironment. In particular, stimulation of CLL cells with CD40L results in substantial resistance mediated by induction of the antiapoptotic Bcl-2 family proteins Bcl-xL and Bfl-1. In this study, we investigated whether resistance to ABT-199 can be conferred by B-cell receptor (BCR) stimulation, which is another important survival signal from the leukemic microenvironment. We show that sustained BCR stimulation results in significant ABT-199 resistance, which correlates with induction of the antiapoptotic protein Mcl-1 and less consistently with downregulation of proapoptotic Bmf, Hrk, and BimEL A major role for Mcl-1 in conferring ABT-199 resistance is additionally supported by knockdown and enforced expression experiments with primary CLL cells. We further show that SYK, BTK, and phosphatidylinositol 3-kinase δ (PI3Kδ) inhibitors significantly downregulate Mcl-1, but with different efficacy. Complete Mcl-1 downregulation was consistently achieved only with SYK inhibitors R406 and GS-9973 (entospletinib), whereas the BTK inhibitor ibrutinib and the PI3Kδ inhibitor idelalisib in more than half of the cases had only a partial effect. The greater ability of SYK inhibitors to downregulate Mcl-1 correlated with their greater capacity to block BCR-mediated inactivation of GSK-3, a major negative regulator of Mcl-1. The finding that BCR signaling inhibitors differ in their ability to target Mcl-1 is relevant for the design of clinical trials combining these agents with ABT-199.
Journal of Experimental Medicine | 2013
Francesca Prete; Marco Catucci; Mayrel Labrada; Stefania Gobessi; Maria Carmina Castiello; Elisa Bonomi; Alessandro Aiuti; William Vermi; Caterina Cancrini; Ayse Metin; Sophie Hambleton; Robbert G. M. Bredius; Luigi D. Notarangelo; Mirjam van der Burg; Ulrich Kalinke; Anna Villa; Federica Benvenuti
Wiskott-Aldrich Syndrome protein (WASp)–mediated actin polymerization controls intracellular trafficking and compartmentalization of TLR9 ligands in plasmacytoid dendritic cells.
Blood | 2015
Stefano Iacovelli; Eva Hug; Sara Bennardo; Marcus Duehren-von Minden; Stefania Gobessi; Andrea Rinaldi; Mirza Suljagic; Daniel Bilbao; Giulia Bolasco; Julia Eckl-Dorna; Verena Niederberger; Francesco Autore; Simona Sica; Luca Laurenti; Hongsheng Wang; Richard J. Cornall; Stephen H. Clarke; Carlo M. Croce; Francesco Bertoni; Hassan Jumaa; Dimitar G. Efremov
Chronic lymphocytic leukemia (CLL) is a common B-cell malignancy characterized by a highly variable course and outcome. The disease is believed to be driven by B-cell receptor (BCR) signals generated by external antigens and/or cell-autonomous BCR interactions, but direct in vivo evidence for this is still lacking. To further define the role of the BCR pathway in the development and progression of CLL, we evaluated the capacity of different types of antigen/BCR interactions to induce leukemia in the Eμ-TCL1 transgenic mouse model. We show that cell autonomous signaling capacity is a uniform characteristic of the leukemia-derived BCRs and represents a prerequisite for CLL development. Low-affinity BCR interactions with autoantigens generated during apoptosis are also positively selected, suggesting that they contribute to the pathogenesis of the disease. In contrast, high-affinity BCR interactions are not selected, regardless of antigen form or presentation. We also show that the capacity of the leukemic cells to respond to cognate antigen correlates inversely with time to leukemia development, suggesting that signals induced by external antigen increase the aggressiveness of the disease. Collectively, these findings provide in vivo evidence that the BCR pathway drives the development and can influence the clinical course of CLL.
Leukemia Research | 2010
Michela Tarnani; Luca Laurenti; Pablo G. Longo; Nicola Piccirillo; Stefania Gobessi; Alice Mannocci; Sara Marietti; Simona Sica; Giuseppe Leone; Dimitar G. Efremov
We recently reported that leukemic cells from IgVH-unmutated/progressive CLL more frequently proliferate in response to CpG-ODN stimulation than their corresponding counterparts. Here we evaluated the prognostic impact of this proliferative response in 91 CLL patients. The proliferative response was highly predictive of PFS, TTT and OS in the whole series and refined prognosis in patients with M-CLL. BCR stimulation modulated the response to CpG-ODN, suggesting that the proliferative capacity of the leukemic cells is related to antigen-encounter history. These data support the hypothesis that the capacity of the leukemic cells to respond to external stimuli influences disease progression in CLL.
Frontiers in Bioscience | 2013
Dimitar G. Efremov; Bomben R; Stefania Gobessi; Gattei
Chronic lymphocytic leukemia (CLL) is a common B-cell malignancy characterized by a highly variable clinical course. The behavior of the disease is believed to be influenced by microenvironmental signals that regulate the proliferation and survival of the malignant B-cells. Signals transduced through Toll-like-receptor-9 (TLR9) may play a particularly important role, as they could drive the expansion of a subset of cells that express B-cell receptors reactive with DNA or DNA-containing complexes. Interestingly, leukemic cells from patients with aggressive disease respond more effectively to TLR9 stimulation than their less aggressive counterparts, suggesting that the capacity to respond to TLR9 signals can define distinct prognostic subsets in CLL. The exact mechanism(s) accounting for the variability in the response to TLR9 engagement are still unclear, although important differences have been observed between prognostic groups in terms of downstream signaling events and gene- and miRNA-expression profiles. Understanding the mechanism(s) that underlie the different TLR9 responses should provide further insight in the pathophysiology of CLL and may lead to the identification of novel targets for therapeutic intervention.
Haematologica | 2012
Francisco de Paula Careta; Stefania Gobessi; Rodrigo A. Panepucci; Engin Bojnik; Fábio Morato de Oliveira; Daniel Mazza Matos; Roberto P. Falcao; Luca Laurenti; Marco A. Zago; Dimitar G. Efremov
Background The malignant B cells in chronic lymphocytic leukemia receive signals from the bone marrow and lymph node microenvironments which regulate their survival and proliferation. Characterization of these signals and the pathways that propagate them to the interior of the cell is important for the identification of novel potential targets for therapeutic intervention. Design and Methods We compared the gene expression profiles of chronic lymphocytic leukemia B cells purified from bone marrow and peripheral blood to identify genes that are induced by the bone marrow microenvironment. Two of the differentially expressed genes were further studied in cell culture experiments and in an animal model to determine whether they could represent appropriate therapeutic targets in chronic lymphocytic leukemia. Results Functional classification analysis revealed that the majority of differentially expressed genes belong to gene ontology categories related to cell cycle and mitosis. Significantly up-regulated genes in bone marrow-derived tumor cells included important cell cycle regulators, such as Aurora A and B, survivin and CDK6. Down-regulation of Aurora A and B by RNA interference inhibited proliferation of chronic lymphocytic leukemia-derived cell lines and induced low levels of apoptosis. A similar effect was observed with the Aurora kinase inhibitor VX-680 in primary chronic lymphocytic leukemia cells that were induced to proliferate by CpG-oligonucleotides and interleukin-2. Moreover, VX-680 significantly blocked leukemia growth in a mouse model of chronic lymphocytic leukemia. Conclusions Aurora A and B are up-regulated in proliferating chronic lymphocytic leukemia cells and represent potential therapeutic targets in this disease.
Clinical Immunology | 2009
Barbara Tolusso; Maria De Santis; Silvia Laura Bosello; Elisa Gremese; Stefania Gobessi; Ilaria Cuoghi; Michele Ciro Totaro; Giulio Bigotti; Carlo Rumi; Dimitar G. Efremov; Gianfranco Ferraccioli
B cells have acquired an important role in the pathogenesis of rheumatoid arthritis (RA) since B cell depletion allowed to rescue patients poorly responders to TNFalpha blockers. This study focused on the involvement of ZAP-70 as a bio-marker of B cells immune activation in RA. ZAP-70 expression in synovial fluid (SF) B cells obtained from RA patients was increased compared to SF B cells of osteoarthritis (OA) patients. Moreover we found that ZAP-70 positive/CD38 positive and ZAP-70 positive/CD5 positive B cells were enriched in SF. The analysis of B cell apoptosis in vitro showed that the percentage of ZAP-70 negative B cells spontaneously undergoing apoptosis was significantly higher than ZAP-70 positive B cells. The ZAP-70 positive B cell ratio (SF/peripheral blood (PB)) showed a positive correlation with SF autoantibody levels and with local levels of BAFF and IL6. ZAP-70 positive B cells seem to define a subset characterized by increased survival and high relationship with local inflammation and autoimmunity.
Collaboration
Dive into the Stefania Gobessi's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputs