Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania Meschini is active.

Publication


Featured researches published by Stefania Meschini.


Toxicology and Applied Pharmacology | 2010

Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells

Barbara De Berardis; Gabriele Civitelli; Maria Condello; Pasquale Lista; Roberta Pozzi; Giuseppe Arancia; Stefania Meschini

Engineered nanoparticles offer great promise in many industrial and biomedical applications, however little information is available about gastrointestinal toxicity. The purpose of this study was to assess the cytotoxicity, oxidative stress, apoptosis and proinflammatory mediator release induced by ZnO nanoparticles on human colon carcinoma LoVo cells. The biological activity of these particles was related to their physico-chemical characteristics. The physico-chemical characteristics were evaluated by analytical electron microscopy. The cytotoxicity was determined by growth curves and water-soluble tetrazolium assay. The reactive oxygen species production, cellular glutathione content, changes of mitochondrial membrane potential and apoptosis cell death were quantified by flow cytometry. The inflammatory cytokines were evaluated by enzyme-linked immunoadsorbent assay. Treatment with ZnO (5μg/cm(2) corresponding to 11.5μg/ml) for 24h induced on LoVo cells a significant decrease of cell viability, H2O2/OH increase, O2(-) and GSH decrease, depolarization of inner mitochondrial membranes, apoptosis and IL-8 release. Higher doses induced about 98% of cytotoxicity already after 24h of treatment. The experimental data show that oxidative stress may be a key route in inducing the cytotoxicity of ZnO nanoparticles in colon carcinoma cells. Moreover, the study of the relationship between toxicological effects and physico-chemical characteristics of particles suggests that surface area does not play a primary role in the cytotoxicity.


Cell Death and Disease | 2010

Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells

Maria Lucia Marino; Stefano Fais; M Djavaheri-Mergny; Antonello Villa; Stefania Meschini; Francesco Lozupone; Giulietta Venturi; P Della Mina; S Pattingre; Licia Rivoltini; P Codogno; A. De Milito

Proton pump inhibitors (PPI) target tumour acidic pH and have an antineoplastic effect in melanoma. The PPI esomeprazole (ESOM) kills melanoma cells through a caspase-dependent pathway involving cytosolic acidification and alkalinization of tumour pH. In this paper, we further investigated the mechanisms of ESOM-induced cell death in melanoma. ESOM rapidly induced accumulation of reactive oxygen species (ROS) through mitochondrial dysfunctions and involvement of NADPH oxidase. The ROS scavenger N-acetyl-L-cysteine (NAC) and inhibition of NADPH oxidase significantly reduced ESOM-induced cell death, consistent with inhibition of cytosolic acidification. Autophagy, a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles, represents a defence mechanism in cancer cells under metabolic stress. ESOM induced the early accumulation of autophagosomes, at the same time reducing the autophagic flux, as observed by WB analysis of LC3-II accumulation and by fluorescence microscopy. Moreover, ESOM treatment decreased mammalian target of rapamycin signalling, as reduced phosphorylation of p70-S6K and 4-EBP1 was observed. Inhibition of autophagy by knockdown of Atg5 and Beclin-1 expression significantly increased ESOM cytotoxicity, suggesting a protective role for autophagy in ESOM-treated cells. The data presented suggest that autophagy represents an adaptive survival mechanism to overcome drug-induced cellular stress and cytotoxicity, including alteration of pH homeostasis mediated by proton pump inhibition.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Enhancement of learning and memory after activation of cerebral Rho GTPases.

Giovanni Diana; Giovanni Valentini; Sara Travaglione; Loredana Falzano; Massimo Pieri; Cristina Zona; Stefania Meschini; Alessia Fabbri; Carla Fiorentini

The mechanism whereby the morphology and connectivity of the dendritic tree is regulated depends on an actin dynamics that, in turn, is controlled by Rho GTPases, a family of small GTP-binding proteins encompassing Rho, Rac, and Cdc42 subfamilies. Cytotoxic necrotizing factor 1 (CNF1), a protein toxin from Escherichia coli, constitutively activates Rho GTPases, thus leading to remodeling of the actin cytoskeleton in intact cells. Here, we show that the modulation of cerebral RhoA and Rac1 activity induced by CNF1 in mice leads to (i) rearrangement of cerebral actin cytoskeleton, (ii) enhanced neurotransmission and synaptic plasticity, and (iii) improved learning and memory in various behavioral tasks. The effects persist for weeks and are not observed in mice treated with a recombinant CNF1, in which the enzymatic activity was abolished by substituting serine to cysteine at position 866. The results suggest that learning ability can be improved through pharmacological manipulation of neural connectivity.


Journal of Clinical Investigation | 2010

CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis.

Anna Rocchi; Maria Cristina Manara; Marika Sciandra; Diana Zambelli; Filippo Nardi; Giordano Nicoletti; Cecilia Garofalo; Stefania Meschini; Annalisa Astolfi; Mario P. Colombo; Stephen L. Lessnick; Piero Picci; Katia Scotlandi

Ewing sarcoma (EWS) is an aggressive bone tumor of uncertain cellular origin. CD99 is a membrane protein that is expressed in most cases of EWS, although its function in the disease is unknown. Here we have shown that endogenous CD99 expression modulates EWS tumor differentiation and malignancy. We determined that knocking down CD99 expression in human EWS cell lines reduced their ability to form tumors and bone metastases when xenografted into immunodeficient mice and diminished their tumorigenic characteristics in vitro. Further, reduction of CD99 expression resulted in neurite outgrowth and increased expression of beta-III tubulin and markers of neural differentiation. Analysis of a panel of human EWS cells revealed an inverse correlation between CD99 and H-neurofilament expression, as well as an inverse correlation between neural differentiation and oncogenic transformation. As knockdown of CD99 also led to an increase in phosphorylation of ERK1/2, we suggest that the CD99-mediated prevention of neural differentiation of EWS occurs through MAPK pathway modulation. Together, these data indicate a new role for CD99 in preventing neural differentiation of EWS cells and suggest that blockade of CD99 or its downstream molecular pathway may be a new therapeutic approach for EWS.


Biochimica et Biophysica Acta | 1999

Biophysical and structural characterization of 1H-NMR-detectable mobile lipid domains in NIH-3T3 fibroblasts

Amalia Ferretti; Arno Knijn; Egidio Iorio; Simonetta Pulciani; Massimo Giambenedetti; Agnese Molinari; Stefania Meschini; Annarita Stringaro; Annarica Calcabrini; Isabel Freitas; Roberto Strom; Giuseppe Arancia; Franca Podo

Nature and subcellular localization of 1H-NMR-detectable mobile lipid domains (ML) were investigated by NMR, Nile red fluorescence and electron microscopy, in NIH-3T3 fibroblasts and their H-ras transformants (3T3ras) transfected with a high number of oncogene copies. Substantial ML levels (ratio of (CH2)n/CH3 peak areas R=1. 56+/-0.33) were associated in untransformed fibroblasts with both (a) intramembrane amorphous lipid vesicles, about 60 nm in diameter, distinct from caveolae; and (b) cytoplasmic, osmiophilic lipid bodies surrounded by own membrane, endowed of intramembrane particles. 2D NMR maps demonstrated that ML comprised both mono- and polyunsaturated fatty chains. Lower ML signals were detected in 3T3ras (R=0.76+/-0.37), under various conditions of cell growth. Very few (if any) lipid bodies and vesicles were detected in the cytoplasmic or membrane compartments of 3T3ras cells with R<0.4, while only intramembrane lipid vesicles were associated with moderate R values. Involvement of phosphatidylcholine hydrolysis in ML generation was demonstrated by selective inhibition of endogenous phospholipase C (PC-plc) or by exposure to bacterial PC-plc. This study indicates that: (1) both cytoplasmic lipid bodies and membrane vesicles (possibly in mutual dynamic exchange) may contribute (although to a different extent) to ML signals; and (2) high levels of ras-transfection either inhibit ML formation or facilitate their extrusion from the cell.


Biotechnology Advances | 2012

The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells.

Giovanni Vitale; Silvia Zappavigna; Monica Marra; Alessandra Dicitore; Stefania Meschini; Maria Condello; Giuseppe Arancia; Sara Castiglioni; Paola Maroni; Paola Bendinelli; Roberta Piccoletti; Peter M. van Koetsveld; Francesco Cavagnini; Alfredo Budillon; Alberto Abbruzzese; Leo J. Hofland; Michele Caraglia

We have previously shown that cancer cells can protect themselves from apoptosis induced by type I interferons (IFNs) through a ras→MAPK-mediated pathway. In addition, since IFN-mediated signalling components STATs are controlled by PPAR gamma we studied the pharmacological interaction between recombinant IFN-β and the PPAR-γ agonist troglitazone (TGZ). This combination induced a synergistic effect on the growth inhibition of BxPC-3, a pancreatic cancer cell line, through the counteraction of the IFN-β-induced activation of STAT-3, MAPK and AKT and the increase in the binding of both STAT-1 related complexes and PPAR-γ with specific DNA responsive elements. The synergism on cell growth inhibition correlated with a cell cycle arrest in G0/G1 phase, secondary to a long-lasting increase of both p21 and p27 expressions. Blockade of MAPK activation and the effect on p21 and p27 expressions, induced by IFN-β and TGZ combination, were due to the decreased activation of STAT-3 secondary to TGZ. IFN-β alone also increased p21 and p27 expression through STAT-1 phosphorylation and this effect was attenuated by the concomitant activation of IFNbeta-induced STAT-3-activation. The combination induced also an increase in autophagy and a decrease in anti-autophagic bcl-2/beclin-1 complex formation. This effect was mediated by the inactivation of the AKT→mTOR-dependent pathway. To the best of our knowledge this is the first evidence that PPAR-γ activation can counteract STAT-3-dependent escape pathways to IFN-β-induced growth inhibition through cell cycle perturbation and increased autophagic death in pancreatic cancer cells.


International Journal of Cancer | 1998

Detection of P-glycoprotein in the Golgi apparatus of drug-untreated human melanoma cells

Agnese Molinari; Annarica Calcabrini; Stefania Meschini; Annarita Stringaro; Donatella Del Bufalo; Maurizio Cianfriglia; Giuseppe Arancia

The intracellular location of the MDR1 gene product, known as P‐glycoprotein (P‐gp), has been detected by flow cytometry in 3 stabilized human melanoma cell lines which had never undergone cytotoxic drug treatment and did not express P‐gp on the plasma membrane. In addition, MDR1 mRNA expression was revealed by RT‐PCR in the same cell lines. Immunofluorescence microscopy, performed by using the same 2 monoclonal antibodies (MM4.17 and MRK‐16) as employed in the flow‐cytometric analysis, revealed the presence of P‐gp intracytoplasmically, in a well‐defined perinuclear region. Double immunofluorescence labelling and immunoelectron microscopy strongly suggested the location of the transporter molecule in the Golgi apparatus. The same observations have been obtained on a primary culture from a metastasis of human melanoma. Analysis of the expression of another membrane transport protein, the multidrug‐resistance‐related protein (MRP1), showed that it was present in the cytoplasm of all the melanoma cell lines examined. MRP1 also showed Golgi‐like localization. The study by laser scanning confocal microscopy on the intracellular localization of the anti‐tumoral agent doxorubicin (DOX) during the drug‐uptake and ‐efflux phases, indicated the Golgi apparatus as a preferential accumulation site for the anthracyclinic antibiotic. P‐gp function modulators (verapamil and cyclosporin A) were able to modify DOX intracytoplasmic distribution and to increase drug intracellular concentration and cytotoxic effect in melanoma cells. On the contrary, MRP1 modulators (probenecid and genistein) did not significantly influence either DOX efflux and distribution or the sensitivity of melanoma cells to the cytotoxic drug. Int. J. Cancer 75:885–893, 1998.


Toxicology in Vitro | 2002

Role of the lung resistance-related protein (LRP) in the drug sensitivity of cultured tumor cells.

Stefania Meschini; Manuela Marra; Annarica Calcabrini; Elena Monti; Marzia B. Gariboldi; Ersilia Dolfini; Giuseppe Arancia

Drug resistance, one of the major obstacle in the successful anticancer therapy, can be observed at the outset of therapy (intrinsic resistance) or after exposure to the antitumor agent (acquired resistance). To gain a better insight into the mechanisms of intrinsic resistance we have analyzed two human cell types derived from untreated tumors: MCF-7 breast cancer and A549 non small cell lung cancer (NSCLC). We have examined: the cytotoxic effect induced by doxorubicin (DOX); the time course of drug accumulation by flow cytometry and intracellular drug distribution by confocal microscopy; the expression and distribution of proteins related to anthracycline resistance, such as P-gp (P-glycoprotein), MRP1 (multidrug resistance-associated protein) and LRP (lung resistance-related protein). The cytotoxicity assays showed that A549 cells were less sensitive than MCF-7 cells to the DOX treatment in agreement with the different DOX uptake. Moreover, while in A549 cells DOX was mostly located in well defined intracytoplasmic vesicles, in MCF-7 cells it was mainly revealed inside the nuclei. The analysis of P-gp and MRP expression did not show significant differences between the two cell lines while a high expression of LRP was detected at the nuclear envelope and cytoplasmic levels in A549 cells. These findings suggest that the lower sensitivity to DOX treatment showed by lung carcinoma cells could be ascribed to drug sequestration by LRP inside the cytoplasmic compartments.


International Journal of Cancer | 2000

Intracellular P‐glycoprotein expression is associated with the intrinsic multidrug resistance phenotype in human colon adenocarcinoma cells

Stefania Meschini; Annarica Calcabrini; Elena Monti; Donatella Del Bufalo; Annarita Stringaro; Ersilia Dolfini; Giuseppe Arancia

The 2 clones, LoVo 5 and LoVo 7, derived from untreated LoVo WT human colon adenocarcinoma cells and exhibiting different sensitivity to doxorubicin (DOX), were compared in order to identify possible determinants of intrinsic drug resistance. A multidrug resistant variant cell line, selected from LoVo WT cells by continuous exposure to DOX (LoVo DX), was also included in the study. Analysis of the expression and organization of cytoskeletal elements by flow cytometry and fluorescence microscopy evidenced a positive correlation between vimentin expression and DOX resistance in LoVo 7 and LoVo DX cells, whereas differences in actin, tubulin or cytokeratin did not seem to relate to drug response. The expression and localization of different drug transporters commonly implicated in drug resistance, i.e., the MDR1 gene product P‐glycoprotein (P‐gp), the multidrug resistance‐related protein MRP and the lung resistance‐related protein LRP were also investigated by means of flow cytometry and fluorescence microscopy, following labeling with specific monoclonal antibodies. Surface expression of P‐gp was only detected in LoVo DX cells, which also exhibited increased MRP and LRP protein levels. However, significant amounts of P‐gp were found at intracellular sites in the intrinsically resistant LoVo 7 clone. Modulation of P‐gp function by cyclosporin A was found to alter DOX accumulation and efflux in LoVo 7 cells, indicating that intracellular P‐gp plays a functional role in drug trafficking and suggesting possible implications in determining the intrinsic resistance displayed by this clone. Int. J. Cancer 87:615–628, 2000.


Biochimica et Biophysica Acta | 2001

The Relationship between 1H- NMR mobile lipid intensity and cholesterol in two human tumor multidrug resistant cell lines (MCF-7 and LoVo)

Maria Teresa Santini; R. Romano; Gabriella Rainaldi; Perla Filippini; Elena Bravo; Loredana Porcu; Andrea Motta; Annarica Calcabrini; Stefania Meschini; Pietro Luigi Indovina; Giuseppe Arancia

The high resolution proton nuclear magnetic resonance (1H-NMR) spectra of two different cell lines exhibiting multidrug resistance (MDR) as demonstrated by the expression of the well-known energy-driven, membrane-bound 170 kDa P-glycoprotein pump known as Pgp were investigated. In particular, the mobile lipid (ML) profile, and the growth and biochemical characteristics of MCF-7 (human mammary carcinoma) and LoVo (human colon adenocarcinoma) sensitive and resistant tumor cells were compared. The results indicate that both MCF-7 and LoVo resistant cells have a higher ML intensity than their respective sensitive counterparts. However, since sensitive and resistant cells of each pair grow in the same manner, variations in growth characteristics do not appear to be the cause of the ML changes as has been suggested by other authors in non-resistant tumor cells. In order to investigate further the origin of the ML changes, lipid analyses were conducted in sensitive and resistant cell types. The results of these experiments show that resistant cells of both cell types have a greater amount of esterified cholesterol and saturated cholesteryl ester and triglyceride fatty acid than their sensitive counterparts. From a thorough analysis of the data obtained in this paper utilizing numerous techniques including biological, biophysical and biochemical ones, it is hypothesized that cholesterol and triglyceride play a pivotal role in inducing changes in NMR ML signals. The importance of these lipid variations in MDR is discussed in view of the controversy regarding the origin of ML signals and the paramount role played by the Pgp pump in resistance.

Collaboration


Dive into the Stefania Meschini's collaboration.

Top Co-Authors

Avatar

Giuseppe Arancia

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Annarica Calcabrini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Agnese Molinari

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Manuela Marra

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Maria Condello

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Annarita Stringaro

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Carla Fiorentini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Loredana Falzano

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Antonio Antoccia

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge