Stefanie Girst
Bundeswehr University Munich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefanie Girst.
Scientific Reports | 2013
Stefanie Girst; V. Hable; Guido A. Drexler; C. Greubel; Christian Siebenwirth; M. Haum; Anna A. Friedl; G. Dollinger
The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a subdiffusion-type random walk process with similar time dependence for isolated and clustered DSBs that were induced by 20 MeV proton or 43 MeV carbon ion micro-irradiation. As compared to normal diffusion, subdiffusion enhances the probability that both ends of a DSB meet, thus promoting high efficiency DNA repair. It also limits their probability of long-range movements and thus lowers the probability of mis-rejoining and chromosome aberrations.
Physics in Medicine and Biology | 2012
Thomas Schmid; C. Greubel; V. Hable; O. Zlobinskaya; D. Michalski; Stefanie Girst; Christian Siebenwirth; E. Schmid; Michael Molls; Gabriele Multhoff; G. Dollinger
This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm(-1)) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBE(MN) = 1.48 ± 0.07) and dicentrics (RBE(D) = 1.92 ± 0.15), in human-hamster hybrid (A(L)) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm(2) matrix compared to quasi homogeneous in a 1 × 1 µm(2) matrix applied protons (RBE(MN) = 1.28 ± 0.07; RBE(D) = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a (12)C ion with 55 MeV total energy (4.48 MeV u(-1)). The enhancements are about half of that obtained for (12)C ions (RBE(MN) = 2.20 ± 0.06 and RBE(D) = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.
International Journal of Radiation Oncology Biology Physics | 2016
Stefanie Girst; C. Greubel; Judith Reindl; Christian Siebenwirth; O. Zlobinskaya; Dietrich W. M. Walsh; Katarina Ilicic; Michaela Aichler; Axel Walch; Jan J. Wilkens; Gabriele Multhoff; G. Dollinger; Thomas Schmid
PURPOSE Proton minibeam radiation therapy is a novel approach to minimize normal tissue damage in the entrance channel by spatial fractionation while keeping tumor control through a homogeneous tumor dose using beam widening with an increasing track length. In the present study, the dose distributions for homogeneous broad beam and minibeam irradiation sessions were simulated. Also, in an animal study, acute normal tissue side effects of proton minibeam irradiation were compared with homogeneous irradiation in a tumor-free mouse ear model to account for the complex effects on the immune system and vasculature in an in vivo normal tissue model. METHODS AND MATERIALS At the ion microprobe SNAKE, 20-MeV protons were administered to the central part (7.2 × 7.2 mm(2)) of the ear of BALB/c mice, using either a homogeneous field with a dose of 60 Gy or 16 minibeams with a nominal 6000 Gy (4 × 4 minibeams, size 0.18 × 0.18 mm(2), with a distance of 1.8 mm). The same average dose was used over the irradiated area. RESULTS No ear swelling or other skin reactions were observed at any point after minibeam irradiation. In contrast, significant ear swelling (up to fourfold), erythema, and desquamation developed in homogeneously irradiated ears 3 to 4 weeks after irradiation. Hair loss and the disappearance of sebaceous glands were only detected in the homogeneously irradiated fields. CONCLUSIONS These results show that proton minibeam radiation therapy results in reduced adverse effects compared with conventional homogeneous broad-beam irradiation and, therefore, might have the potential to decrease the incidence of side effects resulting from clinical proton and/or heavy ion therapy.
Scientific Reports | 2017
Judith Reindl; Stefanie Girst; Dietrich W. M. Walsh; C. Greubel; Benjamin Schwarz; Christian Siebenwirth; Guido A. Drexler; Anna A. Friedl; G. Dollinger
The spatial distribution of DSB repair factors γH2AX, 53BP1 and Rad51 in ionizing radiation induced foci (IRIF) in HeLa cells using super resolution STED nanoscopy after low and high linear energy transfer (LET) irradiation was investigated. 53BP1 and γH2AX form IRIF with same mean size of (540 ± 40) nm after high LET irradiation while the size after low LET irradiation is significantly smaller. The IRIF of both repair factors show nanostructures with partial anti-correlation. These structures are related to domains formed within the chromatin territories marked by γH2AX while 53BP1 is mainly situated in the perichromatin region. The nanostructures have a mean size of (129 ± 6) nm and are found to be irrespective of the applied LET and the labelled damage marker. In contrast, Rad51 shows no nanostructure and a mean size of (143 ± 13) nm independent of LET. Although Rad51 is surrounded by 53BP1 it strongly anti-correlates meaning an exclusion of 53BP1 next to DSB when decision for homologous DSB repair happened.
Scientific Reports | 2017
Dietrich W. M. Walsh; Christian Siebenwirth; C. Greubel; Katarina Ilicic; Judith Reindl; Stefanie Girst; Giovanna Muggiolu; Marina Simon; Philippe Barberet; H. Seznec; Hans Zischka; Gabriele Multhoff; Thomas Schmid; Guenther Dollinger
The reliance of all cell types on the mitochondrial function for survival makes mitochondria an interesting target when trying to understand their role in the cellular response to ionizing radiation. By harnessing highly focused carbon ions and protons using microbeams, we have performed in situ live cell imaging of the targeted irradiation of individual mitochondria stained with Tetramethyl rhodamine ethyl ester (TMRE), a cationic fluorophore which accumulates electrophoretically in polarized mitochondria. Targeted irradiation with both carbon ions and protons down to beam spots of <1 μm induced a near instant loss of mitochondrial TMRE fluorescence signal in the targeted area. The loss of TMRE after targeted irradiation represents a radiation induced change in mitochondrial membrane potential. This is the first time such mitochondrial responses have been documented in situ after targeted microbeam irradiation. The methods developed and the results obtained have the ability to shed new light on not just mitochondria’s response to radiation but to further elucidate a putative mechanism of radiation induced depolarization and mitochondrial response.
Physical Biology | 2015
Judith Reindl; Guido A. Drexler; Stefanie Girst; C. Greubel; Christian Siebenwirth; Sophie E Drexler; G. Dollinger; Anna A. Friedl
Many proteins involved in detection, signalling and repair of DNA double-strand breaks (DSB) accumulate in large number in the vicinity of DSB sites, forming so called foci. Emerging evidence suggests that these foci are sub-divided in structural or functional domains. We use stimulated emission depletion (STED) microscopy to investigate localization of mediator protein 53BP1 and recombination factor Rad51 after irradiation of cells with low linear energy transfer (LET) protons or high LET carbon ions. With a resolution better than 100 nm, STED microscopy and image analysis using a newly developed analyzing algorithm, the reduced product of the differences from the mean, allowed us to demonstrate that with both irradiation types Rad51 occupies spherical regions of about 200 nm diameter. These foci locate within larger 53BP1 accumulations in regions of local 53BP1 depletion, similar to what has been described for the localization of Brca1, CtIP and RPA. Furthermore, localization relative to 53BP1 and size of Rad51 foci was not different after irradiation with low and high LET radiation. As expected, 53BP1 foci induced by low LET irradiation mostly contained one Rad51 focal structure, while after high LET irradiation, most foci contained >1 Rad51 accumulation.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015
Thomas Schmid; W. Friedland; C. Greubel; Stefanie Girst; Judith Reindl; Christian Siebenwirth; Katarina Ilicic; E. Schmid; Gabriele Multhoff; Elise Schmitt; P. Kundrát; G. Dollinger
In conventional experiments on biological effects of radiation types of diverse quality, micrometer-scale double-strand break (DSB) clustering is inherently interlinked with clustering of energy deposition events on nanometer scale relevant for DSB induction. Due to this limitation, the role of the micrometer and nanometer scales in diverse biological endpoints cannot be fully separated. To address this issue, hybrid human-hamster AL cells have been irradiated with 45MeV (60keV/μm) lithium ions or 20MeV (2.6keV/μm) protons quasi-homogeneously distributed or focused to 0.5×1μm(2) spots on regular matrix patterns (point distances up to 10.6×10.6μm), with pre-defined particle numbers per spot to provide the same mean dose of 1.7Gy. The yields of dicentrics and their distribution among cells have been scored. In parallel, track-structure based simulations of DSB induction and chromosome aberration formation with PARTRAC have been performed. The results show that the sub-micrometer beam focusing does not enhance DSB yields, but significantly affects the DSB distribution within the nucleus and increases the chance to form DSB pairs in close proximity, which may lead to increased yields of chromosome aberrations. Indeed, the experiments show that focusing 20 lithium ions or 451 protons per spot on a 10.6μm grid induces two or three times more dicentrics, respectively, than a quasi-homogenous irradiation. The simulations reproduce the data in part, but in part suggest more complex behavior such as saturation or overkill not seen in the experiments. The direct experimental demonstration that sub-micrometer clustering of DSB plays a critical role in the induction of dicentrics improves the knowledge on the mechanisms by which these lethal lesions arise, and indicates how the assumptions of the biophysical model could be improved. It also provides a better understanding of the increased biological effectiveness of high-LET radiation.
PLOS ONE | 2016
Andrea Buchfellner; Larisa Yurlova; Stefan Nüske; Armin M. Scholz; Jacqueline Bogner; Benjamin Ruf; Kourosh Zolghadr; Sophie E Drexler; Guido A. Drexler; Stefanie Girst; C. Greubel; Judith Reindl; Christian Siebenwirth; Tina Romer; Anna A. Friedl; Ulrich Rothbauer
Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.
Radiation Oncology | 2015
Guido A. Drexler; Christian Siebenwirth; Sophie E Drexler; Stefanie Girst; C. Greubel; G. Dollinger; Anna A. Friedl
Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins.
PLOS ONE | 2016
Corina Penterling; Guido A. Drexler; Claudia Böhland; Ramona Stamp; Christina Wilke; Herbert Braselmann; Randolph B. Caldwell; Judith Reindl; Stefanie Girst; C. Greubel; Christian Siebenwirth; Wael Y. Mansour; Kerstin Borgmann; G. Dollinger; Kristian Unger; Anna A. Friedl
Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks.