Stefanie Mühlhausen
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefanie Mühlhausen.
BMC Evolutionary Biology | 2013
Stefanie Mühlhausen; Martin Kollmar
BackgroundThe evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions.ResultsBy analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD.ConclusionsWe have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications.
Genome Biology and Evolution | 2014
Peggy Findeisen; Stefanie Mühlhausen; Silke Dempewolf; Jonny Hertzog; Alexander Zietlow; Teresa Carlomagno; Martin Kollmar
Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog–paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other.
Genome Biology and Evolution | 2014
Stefanie Mühlhausen; Martin Kollmar
The universal genetic code defines the translation of nucleotide triplets, called codons, into amino acids. In many Saccharomycetes a unique alteration of this code affects the translation of the CUG codon, which is normally translated as leucine. Most of the species encoding CUG alternatively as serine belong to the Candida genus and were grouped into a so-called CTG clade. However, the “Candida genus” is not a monophyletic group and several Candida species are known to use the standard CUG translation. The codon identity could have been changed in a single branch, the ancestor of the Candida, or to several branches independently leading to a polyphyletic alternative yeast codon usage (AYCU). In order to resolve the monophyly or polyphyly of the AYCU, we performed a phylogenomics analysis of 26 motor and cytoskeletal proteins from 60 sequenced yeast species. By investigating the CUG codon positions with respect to sequence conservation at the respective alignment positions, we were able to unambiguously assign the standard code or AYCU. Quantitative analysis of the highly conserved leucine and serine alignment positions showed that 61.1% and 17% of the CUG codons coding for leucine and serine, respectively, are at highly conserved positions, whereas only 0.6% and 2.3% of the CUG codons, respectively, are at positions conserved in the respective other amino acid. Plotting the codon usage onto the phylogenetic tree revealed the polyphyly of the AYCU with Pachysolen tannophilus and the CTG clade branching independently within a time span of 30–100 Ma.
BMC Bioinformatics | 2013
Björn Hammesfahr; Florian Odronitz; Stefanie Mühlhausen; Stephan Waack; Martin Kollmar
BackgroundAll sequenced eukaryotic genomes have been shown to possess at least a few introns. This includes those unicellular organisms, which were previously suspected to be intron-less. Therefore, gene splicing must have been present at least in the last common ancestor of the eukaryotes. To explain the evolution of introns, basically two mutually exclusive concepts have been developed. The introns-early hypothesis says that already the very first protein-coding genes contained introns while the introns-late concept asserts that eukaryotic genes gained introns only after the emergence of the eukaryotic lineage. A very important aspect in this respect is the conservation of intron positions within homologous genes of different taxa.ResultsGenePainter is a standalone application for mapping gene structure information onto protein multiple sequence alignments. Based on the multiple sequence alignments the gene structures are aligned down to single nucleotides. GenePainter accounts for variable lengths in exons and introns, respects split codons at intron junctions and is able to handle sequencing and assembly errors, which are possible reasons for frame-shifts in exons and gaps in genome assemblies. Thus, even gene structures of considerably divergent proteins can properly be compared, as it is needed in phylogenetic analyses. Conserved intron positions can also be mapped to user-provided protein structures. For their visualization GenePainter provides scripts for the molecular graphics system PyMol.ConclusionsGenePainter is a tool to analyse gene structure conservation providing various visualization options. A stable version of GenePainter for all operating systems as well as documentation and example data are available at http://www.motorprotein.de/genepainter.html.
BMC Genomics | 2014
Stefanie Mühlhausen; Martin Kollmar
BackgroundMany eukaryotes have been shown to use alternative schemes to the universal genetic code. While most Saccharomycetes, including Saccharomyces cerevisiae, use the standard genetic code translating the CUG codon as leucine, some yeasts, including many but not all of the “Candida”, translate the same codon as serine. It has been proposed that the change in codon identity was accomplished by an almost complete loss of the original CUG codons, making the CUG positions within the extant species highly discriminative for the one or other translation scheme.ResultsIn order to improve the prediction of genes in yeast species by providing the correct CUG decoding scheme we implemented a web server, called Bagheera, that allows determining the most probable CUG codon translation for a given transcriptome or genome assembly based on extensive reference data. As reference data we use 2071 manually assembled and annotated sequences from 38 cytoskeletal and motor proteins belonging to 79 yeast species. The web service includes a pipeline, which starts with predicting and aligning homologous genes to the reference data. CUG codon positions within the predicted genes are analysed with respect to amino acid similarity and CUG codon conservation in related species. In addition, the tRNACAG gene is predicted in genomic data and compared to known leu-tRNACAG and ser-tRNACAG genes. Bagheera can also be used to evaluate any mRNA and protein sequence data with the codon usage of the respective species. The usage of the system has been demonstrated by analysing six genomes not included in the reference data.ConclusionsGene prediction and consecutive comparison with reference data from other Saccharomycetes are sufficient to predict the most probable decoding scheme for CUG codons. This approach has been implemented into Bagheera (http://www.motorprotein.de/bagheera).
BioEssays | 2017
Martin Kollmar; Stefanie Mühlhausen
The canonical genetic code ubiquitously translates nucleotide into peptide sequence with several alterations known in viruses, bacteria, mitochondria, plastids, and single-celled eukaryotes. A new hypothesis to explain genetic code changes, termed tRNA loss driven codon reassignment, has been proposed recently when the polyphyly of the yeast codon reassignment events has been uncovered. According to this hypothesis, the driving force for genetic code changes are tRNA or translation termination factor loss-of-function mutations or loss-of-gene events. The free codon can subsequently be captured by all tRNAs that have an appropriately mutated anticodon and are efficiently charged. Thus, codon capture most likely happens by near-cognate tRNAs and tRNAs whose anticodons are not part of the recognition sites of the respective aminoacyl-tRNA-synthetases. This hypothesis comprehensively explains the CTG codon translation as alanine in Pachysolen yeast together with the long known translation of the same codon as serine in Candida albicans and related species, and can also be applied to most other known reassignments.
Bioinformatics | 2015
Stefanie Mühlhausen; Marcel Hellkamp; Martin Kollmar
UNLABELLED Conserved intron positions in eukaryotic genes can be used to reconstruct phylogenetic trees, to resolve ambiguous subfamily relationships in protein families and to infer the history of gene families. This version of GenePainter facilitates working with large datasets through options to select specific subsets for analysis and visualization, and through providing exhaustive statistics. GenePainters application in phylogenetic analyses is considerably extended by the newly implemented integration of the exon-intron pattern conservation with phylogenetic trees. AVAILABILITY AND IMPLEMENTATION The software along with detailed documentation is available at http://www.motorprotein.de/genepainter and as Supplementary Material. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
RNA Biology | 2017
Martin Kollmar; Stefanie Mühlhausen
ABSTRACT mRNA decoding by tRNAs and tRNA charging by aminoacyl-tRNA synthetases are biochemically separated processes that nevertheless in general involve the same nucleotides. The combination of charging and decoding determines the genetic code. Codon reassignment happens when a differently charged tRNA replaces a former cognate tRNA. The recent discovery of the polyphyly of the yeast CUG sense codon reassignment challenged previous mechanistic considerations and led to the proposal of the so-called tRNA loss driven codon reassignment hypothesis. Accordingly, codon capture is caused by loss of a tRNA or by mutations in the translation termination factor, subsequent reduction of the codon frequency through reduced translation fidelity and final appearance of a new cognate tRNA. Critical for codon capture are sequence and structure of the new tRNA, which must be compatible with recognition regions of aminoacyl-tRNA synthetases. The proposed hypothesis applies to all reported nuclear and organellar codon reassignments.
BMC Evolutionary Biology | 2017
Martin Kollmar; Stefanie Mühlhausen
BackgroundThe last eukaryotic common ancestor already had an amazingly complex cell possessing genomic and cellular features such as spliceosomal introns, mitochondria, cilia-dependent motility, and a cytoskeleton together with several intracellular transport systems. In contrast to the microtubule-based dyneins and kinesins, the actin-filament associated myosins are considerably divergent in extant eukaryotes and a unifying picture of their evolution has not yet emerged.ResultsHere, we manually assembled and annotated 7852 myosins from 929 eukaryotes providing an unprecedented dense sequence and taxonomic sampling. For classification we complemented phylogenetic analyses with gene structure comparisons resulting in 79 distinct myosin classes. The intron pattern analysis and the taxonomic distribution of the classes suggest two myosins in the last eukaryotic common ancestor, a class-1 prototype and another myosin, which is most likely the ancestor of all other myosin classes. The sparse distribution of class-2 and class-4 myosins outside their major lineages contradicts their presence in the last eukaryotic common ancestor but instead strongly suggests early eukaryote-eukaryote horizontal gene transfer.ConclusionsBy correlating the evolution of myosin diversity with the history of Earth we found that myosin innovation occurred in independent major “burst” events in the major eukaryotic lineages. Most myosin inventions happened in the Mesoproterozoic era. In the late Neoproterozoic era, a process of extensive independent myosin loss began simultaneously with further eukaryotic diversification. Since the Cambrian explosion, myosin repertoire expansion is driven by lineage- and species-specific gene and genome duplications leading to subfunctionalization and fine-tuning of myosin functions.
Current Biology | 2018
Stefanie Mühlhausen; Hans Dieter Schmitt; Kuan Ting Pan; Uwe Plessmann; Henning Urlaub; Laurence D. Hurst; Martin Kollmar
Summary Although the “universal” genetic code is now known not to be universal, and stop codons can have multiple meanings, one regularity remains, namely that for a given sense codon there is a unique translation. Examining CUG usage in yeasts that have transferred CUG away from leucine, we here report the first example of dual coding: Ascoidea asiatica stochastically encodes CUG as both serine and leucine in approximately equal proportions. This is deleterious, as evidenced by CUG codons being rare, never at conserved serine or leucine residues, and predominantly in lowly expressed genes. Related yeasts solve the problem by loss of function of one of the two tRNAs. This dual coding is consistent with the tRNA-loss-driven codon reassignment hypothesis, and provides a unique example of a proteome that cannot be deterministically predicted. Video Abstract