Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefanie Sandlöbes is active.

Publication


Featured researches published by Stefanie Sandlöbes.


Science | 2015

Linear complexions: Confined chemical and structural states at dislocations.

Margarita Kuzmina; Michael Herbig; Dirk Ponge; Stefanie Sandlöbes; Dierk Raabe

Welcoming steels new complexion Metals have a number of famous properties, including good strength and ductility. Controlling these properties frequently requires modifying the number and type of structural defects in a metal alloy. Kuzmina et al. produced a new type of defect, called a linear complexion, in magnesium-rich steel (see the Perspective by Kaplan). These complexions are chemically and structurally distinct regions located inside a linear defect and are isolated from the bulk by a layer of dislocations. The discovery suggests a new path for targeting defects and improving alloy development. Science, this issue p. 1080; see also p. 1059 Targeted magnesium segregation in steel allows for confined chemical and structural states inside linear defects. [Also see Perspective by Kaplan] For 5000 years, metals have been mankind’s most essential materials owing to their ductility and strength. Linear defects called dislocations carry atomic shear steps, enabling their formability. We report chemical and structural states confined at dislocations. In a body-centered cubic Fe–9 atomic percent Mn alloy, we found Mn segregation at dislocation cores during heating, followed by formation of face-centered cubic regions but no further growth. The regions are in equilibrium with the matrix and remain confined to the dislocation cores with coherent interfaces. The phenomenon resembles interface-stabilized structural states called complexions. A cubic meter of strained alloy contains up to a light year of dislocation length, suggesting that linear complexions could provide opportunities to nanostructure alloys via segregation and confined structural states.


New Journal of Physics | 2013

Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg-Y alloys

Zongrui Pei; Li-Fang Zhu; Martin Friák; Stefanie Sandlöbes; J. von Pezold; H. W. Sheng; Christopher Race; S. Zaefferer; Bob Svendsen; Dierk Raabe; J. Neugebauer

Magnesium-yttrium alloys show significantly improved room temperature ductility when compared with pure Mg. We study this interesting phenomenon theoretically at the atomic scale employing quantum-mechanical (so-called ab initio) and atomistic modeling methods. Specifically, we have calculated generalized stacking fault energies for five slip systems in both elemental magnesium (Mg) and Mg-Y alloys using (i) density functional theory and (ii) a set of embedded-atom-method (EAM) potentials. These calculations predict that the addition of yttrium results in a reduction in the unstable stacking fault energy of basal slip systems. Specifically in the case of an I2 stacking fault, the predicted reduction of the stacking fault energy due to Y atoms was verified by experimental measurements. Wefind a similar reduction for the stable stacking fault energy of the {11¯


New Journal of Physics | 2015

Rapid theory-guided prototyping of ductile Mg alloys: from binary to multi-component materials

Zongrui Pei; Martin Friák; Stefanie Sandlöbes; Roman Nazarov; Bob Svendsen; Dierk Raabe; Jörg Neugebauer

In order to identify a method allowing for a fast solute assessment without lengthy ab initio calculations, we analyze correlations and anti-correlation between the stacking fault energies (SFEs), which were shown to be related to the macroscopic ductility in Mg alloys, and five material parameters of 18 different elemental solutes. Our analysis reveals that the atomic volume V of pure solutes, their electronegativity ν and bulk modulus B are either linearly or logarithmically related to the SFE. Comparing the impact of solutes with that of yttrium (that increases the ductility in Mg) we propose a single numerical quantity (called yttrium similarity index, YSI) that is based on these inter-relations. Subsequently, we evaluate this new figure of merit for 76 elements from the periodic table of elements in search for solutes reducing the SFE. Limiting ourselves first to binary Mg alloys, we hardly find any alternative solutes providing similar reduction as that due to rare-earth (RE) additions. Therefore, we extended our search to ternary Mg alloys. Assuming that the physical properties of solute combinations can be represented by their average values, 2850 solute combinations were checked and 133 solute pairs (not including any RE elements) have been found to have a YSI larger than 0.85. Quantum-mechanical calculations have been subsequently performed for 11 solute pairs with YSIs higher than 0.95 and they were all found to reduce the in excellent agreement with the predictions based on the YSI.


Scientific Reports | 2017

A rare-earth free magnesium alloy with improved intrinsic ductility

Stefanie Sandlöbes; Martin Friák; Sandra Korte-Kerzel; Zongrui Pei; J. Neugebauer; Dierk Raabe

Metals are the backbone of manufacturing owing to their strength and formability. Compared to polymers they have high mass density. There is, however, one exception: magnesium. It has a density of only 1.7 g/cm3, making it the lightest structural material, 4.5 times lighter than steels, 1.7 times lighter than aluminum, and even slightly lighter than carbon fibers. Yet, the widespread use of magnesium is hampered by its intrinsic brittleness. While other metallic alloys have multiple dislocation slip systems, enabling their well-known ductility, the hexagonal lattice of magnesium offers insufficient modes of deformation, rendering it intrinsically brittle. We have developed a quantum-mechanically derived treasure map which screens solid solution combinations with electronic bonding, structure and volume descriptors for similarity to the ductile magnesium-rare earth alloys. Using this insight we synthesized a surprisingly simple, compositionally lean, low-cost and industry-compatible new alloy which is over 4 times more ductile and 40% stronger than pure magnesium. The alloy contains 1 wt.% aluminum and 0.1 wt.% calcium, two inexpensive elements which are compatible with downstream recycling constraints.


npj Computational Materials | 2017

Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg

Zongrui Pei; Xie Zhang; Tilmann Hickel; Martin Friák; Stefanie Sandlöbes; Biswanath Dutta; Jörg Neugebauer

We have investigated twin boundaries in double-lattice hexagonal close-packed metallic materials, focusing on their atomic geometry. Combining accurate ab-initio methods and large-scale atomistic simulations we address the following two fundamental questions: (i) What are the possible intrinsic twin boundary structures in hcp crystals? (ii) Are these structures stable against small distortions? In order to help end a decade-long controversy over the experimental observations of the atomic structures of twin boundaries, we have determined the energetics, spectra, and transition mechanisms of the twin boundaries. Our results confirm that the mechanical stability controls structures which are observed.Structural materials: at the boundary between twinsA group of atomic defects that are critical to the mechanical properties of common metals is investigated by researchers in Germany and the Czech Republic. Zongrui Pei from the Max-Planck-Institut für Eisenforschung and co-workers identify the types of structural aberration that can exist in materials such as magnesium, zirconium and titanium. A twin boundary occurs where the regular atomic structure in one region becomes misaligned from that in the next. For one specific atomic arrangement, known as a hexagonal close-packed structure, the atomic structures of such defects are not very well understood. Pei et al. use ab-initio methods and large-scale atomistic simulations to show that two types of twin boundaries can occur in magnesium: glide twin boundaries and reflection twin boundaries. They show that mechanical instability makes the former difficult to see experimentally.


Materials Science Forum | 2011

The relation between shear banding, microstructure and mechanical properties in Mg and Mg–Y alloys

Stefanie Sandlöbes; Igor Schestakow; Sang Bong Yi; Stefan Zaefferer; Jing Qui Chen; Martin Friák; Jörg Neugebauer; Dierk Raabe

The formation of deformation-induced shear bands plays an important role for the room temperature deformation of both, Mg and Mg-Y alloys, but the formation and structure of shear bands is distinctively different in the two materials. Due to limited deformation modes in pure Mg, the strain is localized in few shear bands leading to an early failure of the material during cold deformation. Contrarily, Mg-RE (RE: rare earth) alloys exhibit a high density of homogeneously distributed local shear bands during deformation at room temperature. A study of the microstructure of the shear bands by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) at different strains was performed. These investigations give insight into the formation of shear bands and their effects on the mechanical behaviour of pure Mg and Mg-3Y. Since in pure Mg mainly extension twinning and basal dislocation slip are active, high stress fields at grain resp. twin boundaries in shear bands effect fast growth of the shear bands. In Mg-RE alloys additionally contraction and secondary twinning and pyramidal dislocation slip are active leading to the formation of microscopic shear bands which are limited to the boundary between two grains. The effects of shear bands on the mechanical behaviour of pure Mg and Mg-RE alloys are discussed with respect to their formation and growth.


Materials Science Forum | 2012

Microstructural Evolution during Recrystallization of Magnesiun Alloys

Sang Bong Yi; Jan Bohlen; Stefanie Sandlöbes; Stefan Zaefferer; Dietmar Letzig; Karl Ulrich Kainer

Microstructural evolution during the annealing of cold rolled Mg, Mg-1.5Nd and Mg-3Y sheets has been examined. The experimental results show a significant difference in recrystallization kinetics and grain growth between pure Mg and Mg-RE alloy sheets. Pure Mg sheet shows rapid recrystallization and grain growth, whereas recrystallization is considerably retarded in the Mg-RE alloys. Although recrystallized grains which are triggered at shear bands in the cold rolled pure Mg sheet show a relatively weak texture with a basal pole split into the sheet rolling direction, rapid grain growth is accompanied by re-strengthening of the basal-type texture. In contrast, a weak texture appears in the early recrystallization stage in Mg-RE alloys and is retained during annealing due to retarded recrystallization and grain growth.


Materials Science Forum | 2011

Influence of Rare Earth Addition on Texture Development during Static Recrystallization and Mechanical Behaviour of Magnesium Alloy Sheets

Sang Bong Yi; Lilian Rayas; Stefanie Sandlöbes; Stefan Zaefferer; Dietmar Letzig; Karl Ulrich Kainer

The role of rare earth addition on the microstructure and texture during recrystallization of cold rolled sheets is investigated by a comparative study of pure Mg, Mg-3Y and Mg1.5Nd sheets. In pure Mg, nucleation occurs mainly at shear bands which results in a texture weakening. The basal-type texture re-strengthens rapidly during grain growth of the pure Mg sheet. In contrast, in the Mg-RE alloys the weaker texture formed during early recrystallization strage is retained during further annealing due to retarded grain growth. Uni-axial tensile and Erichsen tests show that ductility and sheet formability are significantly improved by addition of rare earth elements.


International Journal of Plasticity | 2018

Room temperature deformation in the Fe 7 Mo 6 μ-Phase

Sebastian Schröders; Stefanie Sandlöbes; Carola Birke; Matthias Loeck; Lars Peters; Christophe Tromas; Sandra Korte-Kerzel

Abstract The role of topologically close packed (TCP) phases in deformation of superalloys and steels is still not fully resolved. In particular, the intrinsic deformation mechanisms of these phases are largely unknown including the active slip systems in most of these complex crystal structures. Here, we present a first detailed investigation of the mechanical properties of the Fe7Mo6 μ-phase at room temperature using microcompression and nanoindentation with statistical EBSD-assisted slip trace analysis and TEM imaging. Slip occurs predominantly on the basal and prismatic planes, resulting also in decohesion on prismatic planes with high defect density. The correlation of the deformation structures and measured hardness reveals pronounced hardening where interaction of slip planes occurs and prevalent deformation at pre-existing defects.


Data in Brief | 2018

Data on measurement of the strain partitioning in a multiphase Zn-Al eutectic alloy

Zhicheng Wu; Stefanie Sandlöbes; Jing Rao; James S. K.-L. Gibson; Benjamin Berkels; Sandra Korte-Kerzel

This paper presents original data related to the research article “Local mechanical properties and plasticity mechanisms in a Zn-Al eutectic alloy” (Wu et al., 2018). The raw data provided here was used for in-situ digital image correlation on the microstructural level using a new method described in the related study. The data includes sample preparation details, image acquisition and data processing. The described approach provides an approach to quantify the local strain distribution and strain partitioning in multiphase microstructures.

Collaboration


Dive into the Stefanie Sandlöbes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Friák

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge