Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Baroni is active.

Publication


Featured researches published by Stefano Baroni.


Journal of Physics: Condensed Matter | 2009

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

Paolo Giannozzi; Stefano Baroni; Nicola Bonini; Matteo Calandra; Roberto Car; Carlo Cavazzoni; Davide Ceresoli; Guido L. Chiarotti; Matteo Cococcioni; Ismaila Dabo; Andrea Dal Corso; Stefano de Gironcoli; Stefano Fabris; Guido Fratesi; Ralph Gebauer; Uwe Gerstmann; Christos Gougoussis; Anton Kokalj; Michele Lazzeri; Layla Martin-Samos; Nicola Marzari; Francesco Mauri; Riccardo Mazzarello; Stefano Paolini; Alfredo Pasquarello; Lorenzo Paulatto; Carlo Sbraccia; Sandro Scandolo; Gabriele Sclauzero; Ari P. Seitsonen

QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.


Reviews of Modern Physics | 2001

Phonons and related crystal properties from density-functional perturbation theory

Stefano Baroni; Stefano de Gironcoli; Andrea Dal Corso; Paolo Giannozzi

This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.


Nano Letters | 2008

Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

Lucia Vitali; Stefano Fabris; Adriano Mosca Conte; Susan Brink; Mario Ruben; Stefano Baroni; Klaus Kern

The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.


Journal of Physics: Condensed Matter | 2017

Advanced capabilities for materials modelling with Quantum ESPRESSO

Paolo Giannozzi; O. Andreussi; T. Brumme; O. Bunau; M. Buongiorno Nardelli; Matteo Calandra; Roberto Car; Carlo Cavazzoni; D. Ceresoli; Matteo Cococcioni; Nicola Colonna; I. Carnimeo; A. Dal Corso; S. de Gironcoli; P. Delugas; Robert A. DiStasio; Andrea Ferretti; A. Floris; Guido Fratesi; Giorgia Fugallo; Ralph Gebauer; Uwe Gerstmann; Feliciano Giustino; T. Gorni; Junteng Jia; M. Kawamura; Hsin-Yu Ko; Anton Kokalj; E. Küçükbenli; Michele Lazzeri

Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.


Reviews in Mineralogy & Geochemistry | 2010

Density-Functional Perturbation Theory for Quasi-Harmonic Calculations

Stefano Baroni; Paolo Giannozzi; Eyvaz I. Isaev

Computer simulations allow for the investigation of many materials properties and processes that are not easily accessible in the laboratory. This is particularly true in the Earth sciences, where the relevant pressures and temperatures may be so extreme that no experimental techniques can operate at those conditions. Computer modeling is often the only source of information on the properties of materials that, combined with indirect evidence (such as e.g. seismic data), allows one to discriminate among competing planetary models. Many computer simulations are performed using effective inter-atomic potentials taylored to reproduce some experimentally observed properties of the materials being investigated. The remoteness of the physically interesting conditions from those achievable in the laboratory, as well as the huge variety of different atomic coordination and local chemical state occurring in the Earth interior, make the dependability of semi-empirical potentials questionable. First-principles techniques based on density-functional theory (DFT) (Hohenberg & Kohn 1964, Kohn & Sham 1965) are much more predictive, not being biased by any prior experimental input, and have demonstrated a considerable accuracy in a wide class of materials and variety of external conditions. The importance of thermal effects in the range of phenomena interesting to the Earth sciences makes a proper account of atomic


Journal of Chemical Physics | 2008

Turbo charging time-dependent density-functional theory with Lanczos chains

Dario Rocca; Ralph Gebauer; Yousef Saad; Stefano Baroni

We introduce a new implementation of time-dependent density-functional theory which allows the entire spectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a single standard ground-state calculation. This method is particularly well suited for large systems and/or large basis sets, such as plane waves or real-space grids. By using a superoperator formulation of linearized time-dependent density-functional theory, we first represent the dynamical polarizability of an interacting-electron system as an off-diagonal matrix element of the resolvent of the Liouvillian superoperator. One-electron operators and density matrices are treated using a representation borrowed from time-independent density-functional perturbation theory, which permits us to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is evaluated through a newly developed algorithm based on the nonsymmetric Lanczos method. Each step of the Lanczos recursion essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian. Suitable extrapolation of the Lanczos coefficients allows for a dramatic reduction of the number of Lanczos steps necessary to obtain well converged spectra, bringing such number down to hundreds (or a few thousands, at worst) in typical plane-wave pseudopotential applications. The resulting numerical workload is only a few times larger than that needed by a ground-state Kohn-Sham calculation for a same system. Our method is demonstrated with the calculation of the spectra of benzene, C(60) fullerene, and of chlorophyll a.


Current Medicinal Chemistry | 2011

Inflammatory and Neurodegenerative Pathways in Depression: A New Avenue for Antidepressant Development?

Mario Catena-Dell'Osso; Cesario Bellantuono; G. Consoli; Stefano Baroni; Francesco Rotella; Donatella Marazziti

The latest advancement in neurobiological research provided an increasing evidence that inflammatory and neurodegenerative pathways play a relevant role in depression. Preclinical and clinical studies on depression highlighted an increased production of inflammatory markers, such as interleukin (IL)-1, IL-6, tumor necrosis factor-α and interferon- α and γ. On the other hand, acute and chronic administration of cytokines or cytokine inducers were found to trigger depressive symptoms. According to the cytokine hypothesis, depression would be due to a stress-related increased production of pro-inflammatory cytokines that, in turn, would lead to increased oxidative and nitrosative brain damage and to indoleamine 2,3 dioxygenase (IDO) induction, with production of tryptophan (TRP) catabolites along the IDO pathway (TRYCATs) and consequent reduced availability of TRP and serotonin (5-HT). Cytokines would also play a role in the onset of the glucocorticoid resistance, underlying the overdrive of the hypothalamic-pituitary-adrenal axis. Therefore, the activation of the inflammatory and neurodegenerative pathways would lead to the brain damage observed in depression through both reduced neurogenesis and increased neurodegeneration. Besides the 5-HT system, other targets, possibly within the I&ND pathways, should be considered for the future treatment of depression: cytokines and their receptors, intracellular inflammatory mediators, IDO, TRYCATs, glucocorticoid receptors, neurotrophic factors may all represent possible therapeutic targets for novel antidepressants. In addition, it should be also clarified the role of the existing anti-inflammatory drugs in the treatment of depression, and those compounds with the anti-inflammatory and anti-oxidative properties should be examined either as monotherapy or adjunctive therapy. In conclusion, the molecular inflammatory and neurodegenerative pathways might provide new targets for antidepressant development and might be crucial to establish a rational treatment of depression aimed, hopefully, to its causal factors.


EPL | 1992

Towards Very Large-Scale Electronic-Structure Calculations

Stefano Baroni; Paolo Giannozzi

We present a new approach to density functional theory, which does not require the calculation of Kohn-Sham orbitals. The computational workload required by our method—which is based on the calculation of selected elements of the Greens function—scales linearly with the volume of the system, thus opening the way to first-principles calculations for very large systems. Some of the problems which still hinder the achievement of this goal are discussed, and possible solutions are outlined. As an application, we calculate the charge density of a model silicon supercell containing 64 atoms slightly displaced at random from equilibrium.


Physical Review Letters | 2003

Structure, rotational dynamics, and superfluidity of small OCS-doped He clusters.

Saverio Moroni; Antonio Sarsa; Stefano Fantoni; Kevin E. Schmidt; Stefano Baroni

The structural and dynamical properties of carbonyl sulfide (OCS) molecules solvated in helium clusters are studied using reptation quantum Monte Carlo, for cluster sizes n=3-20 He atoms. Computer simulations allow us to establish a relation between the rotational spectrum of the solvated molecule and the structure of the He solvent, and of both with the onset of superfluidity. Our results agree with a recent spectroscopic study of this system and provide a more complex and detailed microscopic picture of this system than inferred from experiments.


Journal of Chemical Physics | 1994

Vibrational and dielectric properties of C60 from density‐functional perturbation theory

Paolo Giannozzi; Stefano Baroni

The vibrational frequencies and electric polarizability of the C60 molecule, both in the gaseous and in the solid phases, are calculated from first principles using density‐functional perturbation theory. This method also allows us to obtain the infrared and Raman activities which had never been calculated before. Our results are in excellent agreement with existing experimental data, and they provide accurate predictions for those quantities (such as silent‐mode frequencies and vibrational eigenvectors) which are not easily accessible to experiments.

Collaboration


Dive into the Stefano Baroni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano de Gironcoli

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge