Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Cardarelli is active.

Publication


Featured researches published by Stefano Cardarelli.


international conference of the ieee engineering in medicine and biology society | 2016

A MATLAB-based graphical user interface for the identification of muscular activations from surface electromyography signals

Alessandro Mengarelli; Stefano Cardarelli; Federica Verdini; Laura Burattini; Sandro Fioretti; Francesco Di Nardo

In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.


Journal of Biomechanics | 2018

Balance assessment during squatting exercise: A comparison between laboratory grade force plate and a commercial, low-cost device

Alessandro Mengarelli; Federica Verdini; Stefano Cardarelli; Francesco Di Nardo; Laura Burattini; Sandro Fioretti

Testing balance through squatting exercise is a central part of many rehabilitation programs and sports and plays also an important role in clinical evaluation of residual motor ability. The assessment of center of pressure (CoP) displacement and its parametrization is commonly used to describe and analyze squat movement and the laboratory-grade force plates (FP) are the gold standard for measuring balance performances from a dynamic view-point. However, the Nintendo Wii Balance Board (NWBB) has been recently proposed as an inexpensive and easily available device for measuring ground reaction force and CoP displacement in standing balance tasks. Thus, this study aimed to compare the NWBB-CoP data with those obtained from a laboratory FP during a dynamic motor task, such as the squat task. CoP data of forty-eight subjects were acquired simultaneously from a NWBB and a FP and the analyses were performed over the descending squatting phase. Outcomes showed a very high correlation (r) and limited root-mean-square differences between CoP trajectories in anterior-posterior (r > 0.99, 1.63 ± 1.27 mm) and medial-lateral (r > 0.98, 1.01 ± 0.75 mm) direction. Spatial parameters computed from CoP displacement and ground reaction force peak presented fixed biases between NWBB and FP. Errors showed a high consistency (standard deviation < 2.4% of the FP outcomes) and a random spread distribution around the mean difference. Mean velocity is the only parameter which exhibited a tendency towards proportional values. Findings of this study suggested the NWBB as a valid device for the assessment and parametrization of CoP displacement during squatting movement.


Archive | 2019

Position Estimation of an IMU Placed on Pelvis Through Meta-heuristically Optimised WFLC

Stefano Cardarelli; Federica Verdini; Alessandro Mengarelli; Annachiara Strazza; Francesco Di Nardo; Laura Burattini; Sandro Fioretti

The estimation of lower trunk orientation and position during normal walking is relevant in clinical setting in order to improve the assessment of walking disorders. In this paper we introduce a new method for the estimation of the position of an Inertial Measurement Unit (IMU) placed on pelvis, during normal walking on a treadmill. The element of innovation is the use of a meta-heuristic optimisation process to estimate the optimal parameters of a Weighted Fourier Linear Combiner (WFLC) filter, which is designed to efficiently extract periodic/pseudo-periodic components of signals. The estimation of WFLC parameters was performed through an optimisation procedure based on the Artificial Bee Colony (ABC) algorithm, minimising the difference between the WFLC reconstructed position and the data coming from a sterophotogrammetry (SP) system. The WFLC weights obtained from the first set of data (training set), with different walking speeds, were then used to improve the estimation of multiple walking trials with the same measurement setup (test set). This approach allows to obtain useful clinical information using wearable, lightweight and low power consuming devices such as IMUs. This method has been validated through SP data, evaluating the Root Mean Square Error (RMSE) between the two system’s position estimations. The results show a global improvement of the position estimation over the three axes both during the training phase and the test phase. A low SD among the RMSEs in the test set, after the filter application, shows a good repeatability of the method over different trials at the same speed.


Archive | 2019

Role of the Visual Feedback on Balance Responses to Upright Stance Perturbations

Alessandro Mengarelli; Stefano Cardarelli; Sandro Fioretti; Annachiara Strazza; Andrea Tigrini; Francesco Di Nardo; Laura Burattini; Federica Verdini

In this study an evaluation of visual feedback on the balance response to upright stance perturbations is proposed. Subjects underwent to base of support translations in backward direction at fixed velocity in an eye-open (EO) and eye-closed (EC) condition. Center of pressure (COP) and center of mass (COM) were acquired, showing a repeatable double-peak shape which mirrors two different response periods: a destabilizing phase and a counterbalancing phase. Thus, COP and COM were analyzed on the basis of their temporal and spatial features. Further, also the angular displacement of lower limb joints, trunk and head were considered and lower limb muscular activity in terms of myoelectric latencies. Results showed several differences in COP and COM based parameters between EO and EC condition. Moreover, angular range variations seemed to indicate a different role of each joint in the two considered sensory conditions, highlighting the switch from an ankle-based strategy (EO condition) to a more complex kinematic strategy (EC condition). Outcomes of this study could add information about: (A) the suitability of considering COP displacement in perturbed posture analyses with sensory deprivation and (B) the significant role of the visual feedback in balance maintenance when a sudden and quasi-impulsive disruption is employed.


Archive | 2019

A Sliding Mode Control Model for Perturbed Upright Stance in Healthy Subjects

Alessandro Mengarelli; Sandro Fioretti; Giuseppe Orlando; Stefano Cardarelli; Ismaele Fioretti; Gian Marco Paci; Laura Burattini; Francesco Di Nardo; Annachiara Strazza; Federica Verdini

Human upright stance and balance maintenance in quiet conditions have been extensively evaluated throughout the years. However, relatively less information is available on how the central nervous system (CNS) acts to maintain balance after sudden perturbations of stance. Here, a sliding mode control (SMC) model for the characterization of balance maintenance after external perturbations is proposed. Human stance was modeled as an inverted pendulum (IP), which describes kinematics in the sagittal plane; the choice of a SMC allowed to avoid model linearization, commonly employed when using a single-link IP for bipedal stance modeling, thus providing a more accurate description of the human-stance system dynamics. Model was applied on experimental data obtained from perturbed stance trials consisting of a series of disruptions of the same magnitude. This experimental condition was able to elicit a well-known feature called “habituation rate”, which refers to the subject capacity to self-adapt his/her responses to identical perturbations. SMC parameters were identified through a robust optimization procedure. Results showed limited tracking errors for center of mass displacement. One of the SMC parameters exhibited a clear trend from the first to the last trial, appearing able to quantify the habituation rate effect. The application of such a control model to the non-quiet stance can provide additional information in understanding how the CNS tailors balance responses in different conditions.


Archive | 2019

Gait Asymmetry in Winters Group I Hemiplegic Children: Role of Tibialis Anterior

Francesco Di Nardo; Alessandro Mengarelli; Annachiara Strazza; Marta Malavolta; Federica Verdini; Stefano Cardarelli; Laura Burattini; A. Nascimbeni; Sandro Fioretti

Hemiplegia is a neurological disorder that occurs quite often in children, affecting up to one child in one thousand. Typically, only one side of the body is affected by hemiplegia, while the other side is maintaining an apparently normal behavior. Purpose of present analysis was assessing gait asymmetry in group I (W1) hemiplegic children according to Winters classification, where W1 is characterized by presence of drop foot in swing in the hemiplegic side. Asymmetry was quantified by differences between hemiplegic and non-hemiplegic side in terms of foot-floor contact and electromyographic (EMG) activity. Surface EMG from tibialis anterior (TA) and foot-floor contact data were acquired in ten hemiplegic W1 children during walking to fulfill this aim. An exceptional number of strides was analyzed to consider the data variability, expected in W1 (mean ± SD = 287 ± 62 strides for each child, more than 3000 in total). Statistical gait analysis, a recent methodology performing a statistical characterization of gait, was applied to process EMG data. The research was undertaken in compliance with ethical principles of Helsinki Declaration and approved by institutional expert committee. Results showed that asymmetries were detected in basographic data: W1 children showed a significant decrease (p < 0.05) of strides with normal foot-floor contact (HFPS sequence: heel contact, flat-foot contact, push-off, swing) in hemiplegic side with respect to non-hemiplegic side. Also, TA recruitment presented asymmetries during walking, characterized by a curtailed, less frequent activity (p < 0.05) during terminal swing and a lack of activity at heel strike in hemiplegic side, with respect to non-hemiplegic side. In conclusion, present study suggested that walking in W1 children is characterized by asymmetries in both foot-floor contact patterns and TA recruitment.


Archive | 2019

A Time-Frequency Approach for the Assessment of Dynamic Muscle Co-contractions

Annachiara Strazza; Federica Verdini; Alessandro Mengarelli; Stefano Cardarelli; Laura Burattini; Sandro Fioretti; Francesco Di Nardo

Co-contraction is defined as the activity of agonist and antagonist muscles around a joint, enhancing stability and balance. The quantitative assessment of muscle co-contractions would be meaningful for deepening the comprehension of this physiological mechanism. Thus, the purpose of this work is to quantify muscle co-contraction using energy localization in time-frequency domain of sEMG signal during straight walking. To this purpose, sEMG from tibialis anterior (TA) and gastrocnemius lateralis (GL) and basographic signals were acquired in five healthy subjects during walking. Basographic signals were analyzed to quantify foot-floor contact. sEMG signals were processed using Wavelet Transform (WT) to identify muscular co-contractions, according to the following steps. Daubechies (order 4 with 6 levels of decomposition) was chosen as mother wavelet. A denoising algorithm based on Daubechies mother wavelet was applied for removing noise from raw signals. Denoised signals were decomposed into WT coefficients with different frequency content, and then recombined to achieve the co-scalogram function, a localized statistical assessment of cross-energy density between signals. The localization of regions with maximum cross-energy density provided the assessment of co-contractions in time-frequency domain. This methodology applied to TA and GL signals was able to detect GL/TA co-contractions during mid-stance (30–34% of GC) phase, matching with literature. Moreover, WT approach was able to provide also the frequency band of information content for muscle co-contractions: 65–164 Hz. In conclusion, this study proposed WT cross-energy density as a reliable estimation of muscle co-contraction in time-frequency domain.


Archive | 2019

Are Extensor Digitorum Brevis and Gastrocnemius Working Together? Surface EMG Analysis in Healthy Children

Francesco Di Nardo; Annachiara Strazza; Michela Sara Palmieri; Alessandro Mengarelli; Stefano Cardarelli; Laura Burattini; Ornella Orsini; Federica Verdini; Antonio Bortone; Sandro Fioretti

A relationship between intrinsic and extrinsic foot muscles is acknowledged during walking. Literature on foot-muscle recruitment in children is not very extensive. Purpose of the study was the surface-EMG-based evaluation of possible concomitant recruitment of intrinsic and extrinsic foot muscles during healthy-children walking. Gastrocnemius lateralis (GL) was analyzed as representative for extrinsic foot muscles (ankle plantar flexor). Extensor digitorum brevis (EDB) is one of the main intrinsic foot muscles, controlling foot movement and stability. In this study, EDB was considered as representative of foot muscles. Surface-EMG signals during 4-min walking trial were acquired in eight healthy school-age children (mean ± SD: age 8.3 ± 1.7 years; height 136 ± 8 cm; mass 30.9 ± 6.2 kg) to fulfill the goal of the study. Then, Statistical gait analysis, a recent methodology performing a statistical characterization of gait, was applied to process EMG data. An exceptional number of strides were analyzed to consider the expected variability (mean ± SD = 265 ± 30 strides for each child, nearly 2500 in total). The research was undertaken in compliance with ethical principles of Helsinki Declaration and approved by institutional expert committee. Results showed that EDB activity is localized in two separate regions of gait cycle: mid-stance (from 8.2 ± 7.0 to 50.3 ± 15.0% of gait cycle) and swing phase, from 73.8 ± 13.8 to 95.1 ± 4.7%. Main GL activity occurred in the same regions: mid-stance (from 5.7 ± 2.5 to 49.7 ± 4.6% of gait cycle) and swing phase, from 69.2 ± 18.7 to 95.4 ± 5.4%. These findings showed that regions of activity of EDB and GL were practically overlapped, suggesting that EDB and GL worked synergistically for foot and ankle-joint control in children walking, in a large percentage of strides. Present study produced novel data on the variability of the reciprocal role of EDB and GL during children walking, providing a deeper insight in mechanisms regulating ankle-foot stability.


Computer methods in biomechanics and biomedical engineering. Imaging & visualization | 2018

An interactive tool for the analysis of muscular recruitment during walking task

Alessandro Mengarelli; Stefano Cardarelli; Francesco Di Nardo; Laura Burattini; Federica Verdini; Sandro Fioretti

AbstractThe present work proposes an interactive software tool for surface electromyography signal processing and analysis, focused on the assessment of muscular activations during walking and easy...


Archive | 2017

Ankle Muscles Co-Activation Patterns During Normal Gait: An Amplitude Evaluation

Stefano Cardarelli; Andrea Gentili; Alessandro Mengarelli; Federica Verdini; Sandro Fioretti; Laura Burattini; Francesco Di Nardo

The objective of this work was to quantify co-activations of ankle muscles during able-bodied walking, in terms of amplitude values of surface electromyographic signal (sEMG). Gastrocnemius lateralis (GL) was analyzed as representative muscles for plantar-flexion. Tibialis anterior (TA) was analyzed as representative muscles for dorsi-flexion. Rudolph’s dynamic co-activation index was computed on the sEMG acquired from 182 strides, with the aim of quantifying the ankle-muscles co-contraction amplitude. Four different co-activations between GL and TA were observed during Heel strike (HS), Foot contact (FC), Push-off (PO), and Swing (SW), respectively. No differences were detected in time-duration of co-contractions detected in the different phases (p<0.05). TA/GL co-contraction activity is more intense in stance phase (especially during HS and FC), where a more intensive muscular control is needed for weight-support and Center of pressure (COP) progression. Co-contractions in swing phase are more frequent but milder. SW co-contraction in adults was pointed out only recently; to our knowledge, the present work is the first that quantifies it in terms of absolute and comparative amplitude. PO seems to be a transitory phase between high-level (HS and FC) and low-level (SW) co-contraction intensity regions. Present findings could be useful for deepening the physiological interpretation of ankle muscles co-activity during walking.

Collaboration


Dive into the Stefano Cardarelli's collaboration.

Top Co-Authors

Avatar

Alessandro Mengarelli

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Federica Verdini

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Sandro Fioretti

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Francesco Di Nardo

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Laura Burattini

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Annachiara Strazza

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Andrea Gentili

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

F. Di Nardo

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Marta Malavolta

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge