Stefano Cinti
University of Rome Tor Vergata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefano Cinti.
Mikrochimica Acta | 2016
Fabiana Arduini; Stefano Cinti; Viviana Scognamiglio; Danila Moscone
AbstractThis overview (with 114 refs.) covers the progress made between 2010 and 2015 in the field of nanomaterial based electrochemical biosensors for pesticides in food. Its main focus is on strategies to analyze real samples. The review first gives a short introduction into the most often used biorecognition elements. These include (a) enzymes (resulting in inhibition-based and direct catalytic biosensors), (b) antibodies (resulting in immunosensors), and (c) aptamers (resulting in aptasensors). The next main section covers the various kinds of nanomaterials for use in biosensors and includes carbonaceous species (carbon nanotubes, graphene, carbon black and others), and non-carbonaceous species in the form of nanoparticles, rods, or porous materials. Aspects of sample treatment and real sample analysis are treated next before discussing vanguard technologies in tailor-made food analysis. Graphical abstractLast trends made between 2010 and 2015 on the use of nanomaterials, including graphene, carbon nanotubes, carbon black, metallic nanoparticles, for the development of enzymatic biosensors, immunosensors, and aptasensors were reported, tackling the issues related to pesticide detection in agrifood sector.
Sensors | 2014
Stefano Cinti; Fabiana Arduini; Danila Moscone; Giuseppe Palleschi; Anthony J. Killard
A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs) modified with Prussian blue nanoparticles (PBNPs) deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for optimum measurement of hydrogen peroxide. Sensor optimization resulted in a limit of detection of 2 × 10−7 M, a linear range from 0 to 4.5 mM and a sensitivity of 762 μA·mM−1·cm−2 which was achieved using 20 layers of printed PBNPs. Sensors also demonstrated excellent reproducibility (<5% rsd).
Biosensors and Bioelectronics | 2017
Stefano Cinti; Clarissa Minotti; Danila Moscone; Giuseppe Palleschi; Fabiana Arduini
Paper-based microfluidic devices are gaining large popularity because of their uncontested advantages of simplicity, cost-effectiveness, limited necessity of laboratory infrastructure and skilled personnel. Moreover, these devices require only small volumes of reagents and samples, provide rapid analysis, and are portable and disposable. Their combination with electrochemical detection offers additional benefits of high sensitivity, selectivity, simplicity of instrumentation, portability, and low cost of the total system. Herein, we present the first example of an integrated paper-based screen-printed electrochemical biosensor device able to quantify nerve agents. The principle of this approach is based on dual electrochemical measurements, in parallel, of butyrylcholinesterase (BChE) enzyme activity towards butyrylthiocholine with and without exposure to contaminated samples. The sensitivity of this device is largely improved using a carbon black/Prussian Blue nanocomposite as a working electrode modifier. The proposed device allows an entirely reagent-free analysis. A strip of a nitrocellulose membrane, that contains the substrate, is integrated with a paper-based test area that holds a screen-printed electrode and BChE. Paraoxon, chosen as nerve agent simulant, is linearly detected down to 3µg/L. The use of extremely affordable manufacturing techniques provides a rapid, sensitive, reproducible, and inexpensive tool for in situ assessment of nerve agent contamination. This represents a powerful approach for use by non-specialists, that can be easily broadened to other (bio)systems.
Analytica Chimica Acta | 2017
Fabiana Arduini; Stefano Cinti; Viviana Scognamiglio; Danila Moscone; Giuseppe Palleschi
Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices.
Environmental Science & Technology | 2015
Daria Talarico; Stefano Cinti; Fabiana Arduini; Aziz Amine; Danila Moscone; Giuseppe Palleschi
An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.
Chemistry: A European Journal | 2011
Karel Zelenka; Tomáš Trnka; Iva Tišlerová; Donato Monti; Stefano Cinti; Mario L. Naitana; Luca Schiaffino; Mariano Venanzi; Giuseppe Laguzzi; Loredana Luvidi; Giovanna Mancini; Zdena Nováková; Ondřej Šimák; Zdeněk Wimmer; Pavel Drašar
Solvent-driven aggregation of a series of porphyrin derivatives was studied by UV/Vis and circular dichroism spectroscopy. The porphyrins are characterised by the presence in the meso positions of steroidal moieties further conjugated with glucosyl groups. The presence of these groups makes the investigated macrocycles amphiphilic and soluble in aqueous solvent, namely, dimethyl acetamide/water. Aggregation of the macrocycles is triggered by a change in bulk solvent composition leading to formation of large architectures that express supramolecular chirality, steered by the presence of the stereogenic centres on the periphery of the macrocycles. The aggregation behaviour and chiroptical features of the aggregates are strongly dependent on the number of moieties decorating the periphery of the porphyrin framework. In particular, experimental evidence indicates that the structure of the steroid linker dictates the overall chirality of the supramolecular architectures. Moreover, the porphyrin concentration strongly affects the aggregation mechanism and the CD intensities of the spectra. Notably, AFM investigations reveal strong differences in aggregate morphology that are dependent on the nature of the appended functional groups, and closely in line with the changes in aggregation mechanism. The suprastructures formed at lower concentration show a network of long fibrous structures spanning over tens of micrometres, whereas the aggregates formed at higher concentration have smaller rod-shaped structures that can be recognised as the result of coalescence of smaller globular structures. The fully steroid substituted derivative forms globular structures over the whole concentration range explored. Finally, a rationale for the aggregation phenomena was given by semiempirical calculations at the PM6 level.
Sensors | 2017
Stefano Cinti; Vincenzo Mazzaracchio; Ilaria Cacciotti; Danila Moscone; Fabiana Arduini
Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.
Sensors | 2017
Stefano Cinti; G. Volpe; Silvia Piermarini; Elisabetta Delibato; Giuseppe Palleschi
Salmonella has represented the most common and primary cause of food poisoning in many countries for at least over 100 years. Its detection is still primarily based on traditional microbiological culture methods which are labor-intensive, extremely time consuming, and not suitable for testing a large number of samples. Accordingly, great efforts to develop rapid, sensitive and specific methods, easy to use, and suitable for multi-sample analysis, have been made and continue. Biosensor-based technology has all the potentialities to meet these requirements. In this paper, we review the features of the electrochemical immunosensors, genosensors, aptasensors and phagosensors developed in the last five years for Salmonella detection, focusing on the critical aspects of their application in food analysis.
LECTURE NOTES IN ELECTRICAL ENGINEERING | 2015
Chiara Zanardi; Laura Pigani; Renato Seeber; Fabio Terzi; Fabiana Arduini; Stefano Cinti; Danila Moscone; Giuseppe Palleschi
A screen-printed electrode (SPE) modified with a carbon black and Au nanoparticles bilayer was developed and proposed as an amperometric sensor for ascorbic acid quantification in pharmaceutical products and for dopamine estimation in the presence of large excess of ascorbic acid. Electrochemical investigations highlight the performances of the resulting modified electrode with respect to SPEs modified with a single component of the nano-composite.
Archive | 2018
Stefano Cinti; Viviana Scognamiglio; Danila Moscone; Fabiana Arduini
Abstract Graphene has been emphasized by researchers as the most promising nanomaterial for many application fields, including energy, catalysis, electronics, remediation, and sensing. In the field of analytic sciences, the continuous demand of sensitive, portable, user-friendly, low-cost, and low-volume analyses has highlighted graphene and graphene-related nanocomposites as key components toward the implementation of graphene-based (bio)sensors. This chapter provides the opportunity to summarize and critically evaluate the recent developments of graphene-based electrochemical devices that have been applied in biomedical field, for the detection of a wide variety of analytes of interest ranging from small compounds to nucleic acids, antibodies, proteins, and bacteria. Particular focus will interest graphene-based lab-on-a-chip (LOC) devices that have been (or will be) capable to answer the important query introduced by the World Health Organization (WHO) toward the development of affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end users (ASSURED) devices and to replace traditional approaches in the biomedical self-diagnostic field.