Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Colloca is active.

Publication


Featured researches published by Stefano Colloca.


Science Translational Medicine | 2012

Novel Adenovirus-Based Vaccines Induce Broad and Sustained T Cell Responses to HCV in Man

Eleanor Barnes; Antonella Folgori; Stefania Capone; Leo Swadling; Aston S; Ayako Kurioka; Joel Meyer; Huddart R; Smith K; Townsend R; Anthony Brown; Richard D. Antrobus; Ammendola; M. Naddeo; Geraldine A. O'Hara; Christian B. Willberg; Harrison A; Fabiana Grazioli; Maria Luisa Esposito; Loredana Siani; Cinzia Traboni; Ye Oo; David J. Adams; Adrian V. S. Hill; Stefano Colloca; Alfredo Nicosia; Riccardo Cortese; Paul Klenerman

An adenoviral HCV vaccine induces antiviral T cell responses in human volunteers. Hepatitis Hide and Seek Like venture capitalists and Wall Street bankers, patients receiving results of their blood work don’t like surprises, and more than money is at stake. Because infections caused by the hepatitis C virus (HCV) frequently are asymptomatic, patients might not know they’ve been infected: Symptoms don’t usually appear until irreversible liver scarring has occurred, which may cause cirrhosis, liver failure, or cancer. Even if infection is caught early, current therapies to combat this stealth virus have serious side effects, and there is no vaccine to prevent or treat HCV infection. Now, Barnes et al. demonstrate that vaccines developed with adenoviral vectors can induce broad and sustained immune responses to HCV in humans. Adenoviral vectors have shown promise in vaccine trials in animal models; however, preexisting immunity to common serotypes in humans has limited their use. In a phase 1 clinical trial, Barnes et al. vaccinated healthy subjects with two rare serotype adenoviral vectors that expressed an HCV protein. Both the human and the chimp adenoviral vaccinations elicited HCV-specific immune responses in the recipients that responded to multiple HCV antigens, were sustained for at least a year with boost, and elicited memory responses. And the researchers got a surprise they liked: Vaccination primed T cells to respond to multiple HCV strains at a level consistent with protective immunity. Further trials will be needed to confirm protective or therapeutic roles in HCV-infected individuals. Currently, no vaccine exists for hepatitis C virus (HCV), a major pathogen thought to infect 170 million people globally. Many studies suggest that host T cell responses are critical for spontaneous resolution of disease, and preclinical studies have indicated a requirement for T cells in protection against challenge. We aimed to elicit HCV-specific T cells with the potential for protection using a recombinant adenoviral vector strategy in a phase 1 study of healthy human volunteers. Two adenoviral vectors expressing NS proteins from HCV genotype 1B were constructed based on rare serotypes [human adenovirus 6 (Ad6) and chimpanzee adenovirus 3 (ChAd3)]. Both vectors primed T cell responses against HCV proteins; these T cell responses targeted multiple proteins and were capable of recognizing heterologous strains (genotypes 1A and 3A). HCV-specific T cells consisted of both CD4+ and CD8+ T cell subsets; secreted interleukin-2, interferon-γ, and tumor necrosis factor–α; and could be sustained for at least a year after boosting with the heterologous adenoviral vector. Studies using major histocompatibility complex peptide tetramers revealed long-lived central and effector memory pools that retained polyfunctionality and proliferative capacity. These data indicate that an adenoviral vector strategy can induce sustained T cell responses of a magnitude and quality associated with protective immunity and open the way for studies of prophylactic and therapeutic vaccines for HCV.


Nature Medicine | 2006

A T-cell HCV vaccine eliciting effective immunity against heterologous virus challenge in chimpanzees.

Antonella Folgori; Stefania Capone; Lionello Ruggeri; Annalisa Meola; Elisabetta Sporeno; Bruno Bruni Ercole; Monica Pezzanera; Rosalba Tafi; Mirko Arcuri; Elena Fattori; Armin Lahm; Alessandra Luzzago; Alessandra Vitelli; Stefano Colloca; Riccardo Cortese; Alfredo Nicosia

Three percent of the worlds population is chronically infected with the hepatitis C virus (HCV) and at risk of developing liver cancer. Effective cellular immune responses are deemed essential for spontaneous resolution of acute hepatitis C and long-term protection. Here we describe a new T-cell HCV genetic vaccine capable of protecting chimpanzees from acute hepatitis induced by challenge with heterologous virus. Suppression of acute viremia in vaccinated chimpanzees occurred as a result of massive expansion of peripheral and intrahepatic HCV-specific CD8+ T lymphocytes that cross-reacted with vaccine and virus epitopes. These findings show that it is possible to elicit effective immunity against heterologous HCV strains by stimulating only the cellular arm of the immune system, and suggest a path for new immunotherapy against highly variable human pathogens like HCV, HIV or malaria, which can evade humoral responses.


Nature Medicine | 2014

Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge

Daphne Stanley; Anna N. Honko; Clement Asiedu; John C. Trefry; Annie W. Lau-Kilby; Joshua C. Johnson; Lisa Hensley; Virginia Ammendola; Adele Abbate; Fabiana Grazioli; Kathryn E. Foulds; Cheng Cheng; Lingshu Wang; Mitzi Donaldson; Stefano Colloca; Antonella Folgori; Mario Roederer; Gary J. Nabel; John R. Mascola; Alfredo Nicosia; Riccardo Cortese; Richard A. Koup; Nancy J. Sullivan

Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.


Nature Communications | 2013

Protective CD8 + T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation

Katie Ewer; Geraldine A. O'Hara; Christopher J. A. Duncan; Katharine A. Collins; Susanne H. Sheehy; Arturo Reyes-Sandoval; Anna L. Goodman; Nick J. Edwards; Sean C. Elias; Fenella D. Halstead; Rhea J. Longley; Rosalind Rowland; Ian D. Poulton; Simon J. Draper; Andrew M. Blagborough; Eleanor Berrie; Sarah Moyle; Nicola Williams; Loredana Siani; Antonella Folgori; Stefano Colloca; Robert E. Sinden; Alison M. Lawrie; Riccardo Cortese; Sarah C. Gilbert; Alfredo Nicosia; Adrian V. S. Hill

Induction of antigen-specific CD8+ T cells offers the prospect of immunization against many infectious diseases, but no subunit vaccine has induced CD8+ T cells that correlate with efficacy in humans. Here we demonstrate that a replication-deficient chimpanzee adenovirus vector followed by a modified vaccinia virus Ankara booster induces exceptionally high frequency T-cell responses (median >2400 SFC/106 peripheral blood mononuclear cells) to the liver-stage Plasmodium falciparum malaria antigen ME-TRAP. It induces sterile protective efficacy against heterologous strain sporozoites in three vaccinees (3/14, 21%), and delays time to patency through substantial reduction of liver-stage parasite burden in five more (5/14, 36%), P=0.008 compared with controls. The frequency of monofunctional interferon-γ-producing CD8+ T cells, but not antibodies, correlates with sterile protection and delay in time to patency (Pcorrected=0.005). Vaccine-induced CD8+ T cells provide protection against human malaria, suggesting that a major limitation of previous vaccination approaches has been the insufficient magnitude of induced T cells.


Human Vaccines | 2010

Prime-boost vectored malaria vaccines: progress and prospects.

Adrian V. S. Hill; Arturo Reyes-Sandoval; Geraldine A. O'Hara; Katie Ewer; Alison M. Lawrie; Anna L. Goodman; Alfredo Nicosia; Antonella Folgori; Stefano Colloca; Riccardo Cortese; Sarah C. Gilbert; Simon J. Draper

The difficulty of inducing protective immunity through antibodies against sporozoites led to efforts to assess vectored vaccines as a means of inducing protective T cell immunity against the malaria liver-stage parasite. Although DNA vectored vaccines used alone were poorly immunogenic and not protective, high levels of parasite clearance in the liver has been achieved with viral vectored vaccines used in heterologous prime-boost regimes. Such vectored vaccination regimes represent one of only two approaches that have induced repeatable partial efficacy in human P. falciparum subunit vaccine trials. Interestingly, vectors expressing the TRAP antigen have been consistently been more immunogenic and protective than vectors expressing the circumsporozoite protein in human trials. However, sterile protection requires induction of very potent T cell responses that are currently only achievable with heterologous prime-boost regimes. Recently, simian adenoviruses have been assessed as priming agents in Adenovirus-MVA regimes in both phase I and phase IIa trials in the UK, based on very promising pre-clinical results showing better immunogenicity and efficacy than previous prime-boost regimes. The same vectors are also being assessed clinically expressing blood-stage antigens, attempting to induce both protective antibodies and T cells as recently demonstrated in murine efficacy studies. These viral vectors now provide a major option for inclusion in a high efficacy multi-stage malaria vaccine that should achieve deployable levels of efficacy in endemic settings.


Science Translational Medicine | 2012

Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species.

Stefano Colloca; E. Barnes; Antonella Folgori; Ammendola; Stefania Capone; Cirillo A; Loredana Siani; M. Naddeo; Fabiana Grazioli; Maria Luisa Esposito; Ambrosio M; Sparacino A; Bartiromo M; Meola A; Smith K; Ayako Kurioka; Geraldine A. O'Hara; Katie Ewer; Nicholas A. Anagnostou; Carly M. Bliss; Adrian V. S. Hill; Cinzia Traboni; Paul Klenerman; Riccardo Cortese; Alfredo Nicosia

Simian adenoviruses screened from wild-derived candidates can prime T cell responses in man and may serve as new vaccine vector candidates. Deepening the Talent Pool Whether you’re talking about drafting for a professional sports team or hiring new lab staff, increasing the number of candidates improves your chances of the truly exceptional find. When it comes to vaccine vectors, the pool of human adenovirus candidates has been quite shallow. Although certain vectors are highly immunogenic in animal models, they can be neutralized by preexisting antibodies in humans. Yet, Colloca et al. show that viruses that are more rare in humans and are thus less likely to be neutralized are not as immunogenic. Therefore, the authors deepened the vector pool by isolating more than 1000 adenovirus strains from chimpanzees. They identified vectors that grew in human cells and were not neutralized by human sera and prevented them from replicating. As with human adenoviral vectors, different simian vectors induced either more or less potent immune responses in mice. The more potent of these vectors were also immunogenic in humans. These chimp adenoviral vectors provide such embarrassment of riches that different vectors could be used for each vaccine target, lowering the chances of subsequent cross-reactive neutralization. Thus, these vectors serve as prime candidates for future vaccine development. Replication-defective adenovirus vectors based on human serotype 5 (Ad5) induce protective immune responses against diverse pathogens and cancer in animal models, as well as elicit robust and sustained cellular immunity in humans. However, most humans have neutralizing antibodies to Ad5, which can impair the immunological potency of such vaccines. Here, we show that rare serotypes of human adenoviruses, which should not be neutralized in most humans, are far less potent as vaccine vectors than Ad5 in mice and nonhuman primates, casting doubt on their potential efficacy in humans. To identify novel vaccine carriers suitable for vaccine delivery in humans, we isolated and sequenced more than 1000 adenovirus strains from chimpanzees (ChAd). Replication-defective vectors were generated from a subset of these ChAd serotypes and screened to determine whether they were neutralized by human sera and able to grow in human cell lines. We then ranked these ChAd vectors by immunological potency and found up to a thousandfold variation in potency for CD8+ T cell induction in mice. These ChAd vectors were safe and immunologically potent in phase 1 clinical trials, thereby validating our screening approach. These data suggest that the ChAd vectors developed here represent a large collection of non–cross-reactive, potent vectors that may be exploited for the development of new vaccines.


The New England Journal of Medicine | 2017

Chimpanzee Adenovirus Vector Ebola Vaccine - Preliminary Report.

Julie E. Ledgerwood; Adam DeZure; Daphne Stanley; Laura Novik; Mary E. Enama; Nina M. Berkowitz; Zonghui Hu; Gyan Joshi; Aurélie Ploquin; Sandra Sitar; Ingelise J. Gordon; Sarah A. Plummer; LaSonji A. Holman; Cynthia S. Hendel; Galina Yamshchikov; François Roman; Alfredo Nicosia; Stefano Colloca; Riccardo Cortese; Robert T. Bailer; Richard M. Schwartz; Mario Roederer; John R. Mascola; Richard A. Koup; Nancy J. Sullivan; Barney S. Graham; Abstr Act

Background The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication‐defective recombinant chimpanzee adenovirus type 3–vectored ebolavirus vaccine (cAd3‐EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. Methods We conducted a phase 1, dose‐escalation, open‐label trial of cAd3‐EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×1010 particle units or 2×1011 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer‐term vaccine durability was assessed at 48 weeks after vaccination. Results In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×1011 particle‐unit dose. Glycoprotein‐specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×1011 particle‐unit dose than in the group that received the 2×1010 particle‐unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein‐specific T‐cell responses were more frequent among those who received the 2×1011 particle‐unit dose than among those who received the 2×1010 particle‐unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×1011 particle‐unit dose. Conclusions Reactogenicity and immune responses to cAd3‐EBO vaccine were dose‐dependent. At the 2×1011 particle‐unit dose, glycoprotein Zaire–specific antibody responses were in the range reported to be associated with vaccine‐induced protective immunity in challenge studies involving nonhuman primates, and responses were sustained to week 48. Phase 2 studies and efficacy trials assessing cAd3‐EBO are in progress. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 ClinicalTrials.gov number, NCT02231866.)


The Journal of Infectious Diseases | 2012

Clinical Assessment of a Recombinant Simian Adenovirus ChAd63: A Potent New Vaccine Vector

Geraldine A. O'Hara; Christopher J. A. Duncan; Katie Ewer; Katharine A. Collins; Sean C. Elias; Fenella D. Halstead; Anna L. Goodman; Nick J. Edwards; Arturo Reyes-Sandoval; Prudence Bird; Rosalind Rowland; Susanne H. Sheehy; Ian D. Poulton; Claire Hutchings; Stephen Todryk; Laura Andrews; Antonella Folgori; Eleanor Berrie; Sarah Moyle; Alfredo Nicosia; Stefano Colloca; Riccardo Cortese; Loredana Siani; Alison M. Lawrie; Sarah C. Gilbert; Adrian V. S. Hill

Background. Vaccine development in human Plasmodium falciparum malaria has been hampered by the exceptionally high levels of CD8+ T cells required for efficacy. Use of potently immunogenic human adenoviruses as vaccine vectors could overcome this problem, but these are limited by preexisting immunity to human adenoviruses. Methods. From 2007 to 2010, we undertook a phase I dose and route finding study of a new malaria vaccine, a replication-incompetent chimpanzee adenovirus 63 (ChAd63) encoding the preerythrocytic insert multiple epitope thrombospondin-related adhesion protein (ME-TRAP; n = 54 vaccinees) administered alone (n = 28) or with a modified vaccinia virus Ankara (MVA) ME-TRAP booster immunization 8 weeks later (n = 26). We observed an excellent safety profile. High levels of TRAP antigen–specific CD8+ and CD4+ T cells, as detected by interferon γ enzyme-linked immunospot assay and flow cytometry, were induced by intramuscular ChAd63 ME-TRAP immunization at doses of 5 × 1010 viral particles and above. Subsequent administration of MVA ME-TRAP boosted responses to exceptionally high levels, and responses were maintained for up to 30 months postvaccination. Conclusions. The ChAd63 chimpanzee adenovirus vector appears safe and highly immunogenic, providing a viable alternative to human adenoviruses as vaccine vectors for human use. Clinical Trials Registration. NCT00890019.


Infection and Immunity | 2010

Prime-Boost Immunization with Adenoviral and Modified Vaccinia Virus Ankara Vectors Enhances the Durability and Polyfunctionality of Protective Malaria CD8+ T-Cell Responses

Arturo Reyes-Sandoval; Tamara Berthoud; Nicola Alder; Loredana Siani; Sarah C. Gilbert; Alfredo Nicosia; Stefano Colloca; Riccardo Cortese; Adrian V. S. Hill

ABSTRACT Protection against liver-stage malaria relies on the induction of high frequencies of antigen-specific CD8+ T cells. We have previously reported high protective levels against mouse malaria, albeit short-lived, by a single vaccination with adenoviral vectors coding for a liver-stage antigen (ME.TRAP). Here, we report that prime-boost regimens using modified vaccinia virus Ankara (MVA) and adenoviral vectors encoding ME.TRAP can enhance both short- and long-term sterile protection against malaria. Protection persisted for at least 6 months when simian adenoviruses AdCh63 and AdC9 were used as priming vectors. Kinetic analysis showed that the MVA boost made the adenoviral-primed T cells markedly more polyfunctional, with the number of gamma interferon (INF-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2 (IL-2) triple-positive and INF-γ and TNF-α double-positive cells increasing over time, while INF-γ single-positive cells declined with time. However, IFN-γ production prevailed as the main immune correlate of protection, while neither an increase of polyfunctionality nor a high integrated mean fluorescence intensity (iMFI) correlated with protection. These data highlight the ability of optimized viral vector prime-boost regimens to generate more protective and sustained CD8+ T-cell responses, and our results encourage a more nuanced assessment of the importance of inducing polyfunctional CD8+ T cells by vaccination.


Science Translational Medicine | 2014

A Human Vaccine Strategy Based On Chimpanzee Adenoviral and MVA Vectors That Primes, Boosts and Sustains Functional HCV Specific T-Cell Memory

Leo Swadling; Stefania Capone; Richard D. Antrobus; Anthony Brown; Rachel Richardson; Evan W. Newell; John Halliday; Christabel Kelly; Bowen D; Joannah R. Fergusson; Ayako Kurioka; Ammendola; Del Sorbo M; Fabiana Grazioli; Maria Luisa Esposito; Loredana Siani; Cinzia Traboni; Adrian V. S. Hill; Stefano Colloca; Mark M. Davis; Alfredo Nicosia; Riccardo Cortese; Antonella Folgori; Paul Klenerman; Eleanor Barnes

A prime-boost HCV vaccine strategy induces durable and broad T cell responses, characteristic of those associated with viral control. An Ounce of HCV Prevention Chronic hepatitis C virus (HCV) infection causes liver inflammation that can lead to diminished liver function or liver failure. Recent approval of antiviral drugs for HCV affords health care providers with treatment options; however, these new therapies are expensive with limited availability, leaving the door open for preventative approaches such as vaccines. Swadling et al. report a first-in-human trial of a prime-boost vaccine strategy for HCV. They prime with a simian adenoviral vector followed by a modified vaccinia Ankara vector encoding HCV proteins, which induces a T cell response similar to that found in HCV control in natural infection. If this strategy can show efficacy in later-stage studies, this approach could be used in a preventative HCV vaccine. A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8+ and CD4+ HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.

Collaboration


Dive into the Stefano Colloca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riccardo Cortese

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Vitelli

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge