Stefano D'Aronco
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefano D'Aronco.
acm multimedia | 2016
Federico Chiariotti; Stefano D'Aronco; Laura Toni; Pascal Frossard
In this work, we propose an online adaptation logic for Dynamic Adaptive Streaming over HTTP (DASH) clients, where each client selects the representation that maximize the long term expected reward. The latter is defined as a combination of the decoded quality, the quality fluctuations and the rebuffering events experienced by the user during the playback. To solve this problem, we cast a Markov Decision Process (MDP) optimization for the selection of the optimal representations. System dynamics required in the MDP model are a priori unknown and are therefore learned through a Reinforcement Learning (RL) technique. The developed learning process exploits a parallel learning technique that improves the learning rate and limits sub-optimal choices, leading to a fast and yet accurate learning process that quickly converges to high and stable rewards. Therefore, the efficiency of our controller is not sacrificed for fast convergence. Simulation results show that our algorithm achieves a higher QoE than existing RL algorithms in the literature as well as heuristic solutions, as it is able to increase average QoE and reduce quality fluctuations.
IEEE ACM Transactions on Networking | 2017
Stefano D'Aronco; Laura Toni; Sergio Mena; Xiaoqing Zhu; Pascal Frossard
Due to the presence of buffers in the inner network nodes, each congestion event leads to buffer queueing and thus to an increasing end-to-end delay. In the case of delay sensitive applications, a large delay might not be acceptable and a solution to properly manage congestion events while maintaining a low end-to-end delay is required. Delay-based congestion algorithms are a viable solution as they target to limit the experienced end-to-end delay. Unfortunately, they do not perform well when sharing the bandwidth with congestion control algorithms not regulated by delay constraints (e.g., loss-based algorithms). Our target is to fill this gap, proposing a novel congestion control algorithm for delay-constrained communication over best effort packet switched networks. The proposed algorithm is able to maintain a bounded queueing delay when competing with other delay-based flows, and avoid starvation when competing with loss-based flows. We adopt the well-known price-based distributed mechanism as congestion control, but: 1) we introduce a novel non-linear mapping between the experienced delay and the price function and 2) we combine both delay and loss information into a single price term based on packet interarrival measurements. We then provide a stability analysis for our novel algorithm and we show its performance in the simulation results carried out in the NS3 framework. Simulation results demonstrate that the proposed algorithm is able to: achieve good intra-protocol fairness properties, control efficiently the end-to-end delay, and finally, protect the flow from starvation when other flows cause the queuing delay to grow excessively.
international symposium on multimedia | 2016
Stefano D'Aronco; Laura Toni; Pascal Frossard
HTTP adaptive streaming (HAS) has become the universal technology for video streaming over the Internet. Many HAS system designs aim at sharing the network bandwidth in a rate-fair manner. However, rate fairness is in general not equivalent to quality fairness as different video sequences might have different characteristics and resource requirements. In this work, we focus on this limitation and propose a novel controller for HAS clients that is able to reach quality fairness while preserving the main characteristics of HAS systems and with a limited support from the network devices. In particular, we adopt a price-based mechanism in order to build a controller that maximizes the aggregate video quality for a set of HAS clients that share a common bottleneck. When network resources are scarce, the clients with simple video sequences reduce the requested bitrate in favor of users that subscribe to more complex video sequences, leading to a more efficient network usage. The proposed controller has been implemented in a network simulator, and the simulation results demonstrate its ability to share the available bandwidth among the HAS users in a quality-fair manner.
Proceedings of the 23rd Packet Video Workshop on | 2018
Stefano D'Aronco; Pascal Frossard
Adapting the transmission rate of video telephony Internet applications in order to guarantee the maximal communication quality is still an open and extremely challenging problem. The congestion control algorithm, which is the algorithm responsible for adjusting the transmission rate according to the network conditions, should typically be able to reach the largest possible rate, in order to achieve a high video quality, at the minimum possible delay, in order to guarantee a good interactivity. At the same time, it should also guarantee a fair share of the network resources when competing with other communication protocols, in particular loss-based congestion protocols. These two objectives actually conflict with each other: whereas, in order to achieve the largest rate with the minimum delay, the delay-based congestion control should be extremely sensitive to delay variations, it should also be ideally immune to delay variations to have perfect coexistence with loss-based protocols. In order to achieve this double objective we propose a learning-based adaptive controller that tunes the delay sensitivity of an underlying delay-based congestion control according to the estimated network conditions. We first define a simple low-dimensional model for the network response. We then formulate a bayesian bandit problem for the selection of the delay sensitivity of the congestion control algorithm. By solving the bandit problem using an optimal learning method we are able to maximize effectively the long term utility provided to the user. Finally, we provide simulation results to demonstrate the operation of the proposed method and its effective ability to adapt to different network scenarios in order to maximize the communication quality.
ACM Transactions on Multimedia Computing, Communications, and Applications | 2017
Stefano D'Aronco; Sergio Mena; Pascal Frossard
Multiparty videoconferences, or more generally multiparty video calls, are gaining a lot of popularity as they offer a rich communication experience. These applications have, however, large requirements in terms of both network and computational resources and have to deal with sets of heterogenous clients. The multiparty videoconferencing systems are usually either based on expensive central nodes, called Multipoint Control Units (MCU), with transcoding capabilities, or on a peer-to-peer architecture where users cooperate to distribute more efficiently the different video streams. Whereas the first class of systems requires an expensive central hardware, the second one depends completely on the redistribution capacity of the users, which sometimes might neither provide sufficient bandwidth nor be reliable enough. In this work, we propose an alternative solution where we use a central node to distribute the video streams, but at the same time we maintain the hardware complexity and the computational requirements of this node as low as possible, for example, it has no video decoding capabilities. We formulate the rate allocation problem as an optimization problem that aims at maximizing the Quality of Service (QoS) of the videoconference. We propose two different distributed algorithms for solving the optimization problem: the first algorithm is able to find an approximate solution of the problem in a one-shot execution, whereas the second algorithm, based on Lagrangian relaxation, performs iterative updates of the optimization variables in order to gradually increase the value of the objective function. The two algorithms, though being disjointed, nicely complement each other. If executed in sequence, they allow us to achieve both a quick approximate rate reallocation, in case of a sudden change of the system conditions, and a precise refinement of the variables, which avoids problems caused by possible faulty approximate solutions. We have further implemented our solution in a network simulator where we show that our rate allocation algorithm is able to properly optimize users’ QoS. We also illustrate the benefits of our solution in terms of network usage and overall utility when compared to a baseline heuristic method operating on the same system architecture.
Archive | 2015
Stefano D'Aronco; Paul Jones; Charles Ganzhorn; Rong Pan; Michael Ramalho; Sergio Mena de la Cruz; Xiaoqing Zhu
IEEE MultiMedia | 2017
Stefano D'Aronco; Laura Toni; Pascal Frossard
arXiv: Networking and Internet Architecture | 2017
Stefano D'Aronco; Laura Toni; Pascal Frossard
acm multimedia | 2016
Stefano D'Aronco; Sergio Mena; Pascal Frossard
Archive | 2017
Sergio Mena de la Cruz; Laura Toni; Stefano D'Aronco