Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Duga is active.

Publication


Featured researches published by Stefano Duga.


The New England Journal of Medicine | 2014

Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

Jacy R. Crosby; Gina M. Peloso; Paul L. Auer; David R. Crosslin; Nathan O. Stitziel; Leslie A. Lange; Yingchang Lu; Zheng-zheng Tang; He Zhang; George Hindy; Nicholas G. D. Masca; Kathleen Stirrups; Stavroula Kanoni; Ron Do; Goo Jun; Youna Hu; Hyun Min Kang; Chenyi Xue; Anuj Goel; Martin Farrall; Stefano Duga; Pier Angelica Merlini; Rosanna Asselta; Domenico Girelli; Nicola Martinelli; Wu Yin; Dermot F. Reilly; Elizabeth K. Speliotes; Caroline S. Fox; Kristian Hveem

BACKGROUND Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). CONCLUSIONS Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).


Nature | 2015

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction

Ron Do; Nathan O. Stitziel; Hong-Hee Won; Anders Jørgensen; Stefano Duga; Pier Angelica Merlini; Adam Kiezun; Martin Farrall; Anuj Goel; Or Zuk; Illaria Guella; Rosanna Asselta; Leslie A. Lange; Gina M. Peloso; Paul L. Auer; Domenico Girelli; Nicola Martinelli; Deborah N. Farlow; Mark A. DePristo; Robert Roberts; Alex Stewart; Danish Saleheen; John Danesh; Stephen E. Epstein; Suthesh Sivapalaratnam; G. Kees Hovingh; John J. P. Kastelein; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann

Summary Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, the role of inheritance is substantially greater1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3–8 whereas common variants at more than 45 loci have been associated with MI risk in the population9–15. Here, we evaluate the contribution of rare mutations to MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes where rare coding-sequence mutations were more frequent in cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare, damaging mutations (3.1% of cases versus 1.3% of controls) were at 2.4-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). This sequence-based estimate of the proportion of early MI cases due to LDLR mutations is remarkably similar to an estimate made more than 40 years ago using total cholesterol16. At apolipoprotein A-V (APOA5), carriers of rare nonsynonymous mutations (1.4% of cases versus 0.6% of controls) were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C318,19. When combined, these observations suggest that, beyond LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


The New England Journal of Medicine | 2014

Inactivating mutations in NPC1L1 and protection from coronary heart disease

Nathan O. Stitziel; Hong-Hee Won; Alanna C. Morrison; Gina M. Peloso; Ron Do; Leslie A. Lange; Pierre Fontanillas; Namrata Gupta; Stefano Duga; Anuj Goel; Martin Farrall; Danish Saleheen; Paola G. Ferrario; Inke R. König; Rosanna Asselta; Piera Angelica Merlini; Nicola Marziliano; Maria Francesca Notarangelo; Ursula M. Schick; Paul L. Auer; Themistocles L. Assimes; Muredach P. Reilly; Robert L. Wilensky; Daniel J. Rader; G. Kees Hovingh; Thomas Meitinger; Thorsten Kessler; Adnan Kastrati; Karl-Ludwig Laugwitz; David S. Siscovick

BACKGROUND Ezetimibe lowers plasma levels of low-density lipoprotein (LDL) cholesterol by inhibiting the activity of the Niemann-Pick C1-like 1 (NPC1L1) protein. However, whether such inhibition reduces the risk of coronary heart disease is not known. Human mutations that inactivate a gene encoding a drug target can mimic the action of an inhibitory drug and thus can be used to infer potential effects of that drug. METHODS We sequenced the exons of NPC1L1 in 7364 patients with coronary heart disease and in 14,728 controls without such disease who were of European, African, or South Asian ancestry. We identified carriers of inactivating mutations (nonsense, splice-site, or frameshift mutations). In addition, we genotyped a specific inactivating mutation (p.Arg406X) in 22,590 patients with coronary heart disease and in 68,412 controls. We tested the association between the presence of an inactivating mutation and both plasma lipid levels and the risk of coronary heart disease. RESULTS With sequencing, we identified 15 distinct NPC1L1 inactivating mutations; approximately 1 in every 650 persons was a heterozygous carrier for 1 of these mutations. Heterozygous carriers of NPC1L1 inactivating mutations had a mean LDL cholesterol level that was 12 mg per deciliter (0.31 mmol per liter) lower than that in noncarriers (P=0.04). Carrier status was associated with a relative reduction of 53% in the risk of coronary heart disease (odds ratio for carriers, 0.47; 95% confidence interval, 0.25 to 0.87; P=0.008). In total, only 11 of 29,954 patients with coronary heart disease had an inactivating mutation (carrier frequency, 0.04%) in contrast to 71 of 83,140 controls (carrier frequency, 0.09%). CONCLUSIONS Naturally occurring mutations that disrupt NPC1L1 function were found to be associated with reduced plasma LDL cholesterol levels and a reduced risk of coronary heart disease. (Funded by the National Institutes of Health and others.).


Haemophilia | 2002

Rare coagulation deficiencies

Flora Peyvandi; Stefano Duga; Sepideh Akhavan; P. M. Mannucci

Summary.  Deficiencies of coagulation factors (other than factor VIII and factor IX) that cause a bleeding disorder are inherited as autosomal recessive traits and are generally rare, with prevalences in the general population varying between 1 : 500 000 and 1 : 2 000 000. In the last few years, the number of patients with recessively transmitted coagulation deficiencies has increased in European countries with a high rate of immigration of Islamic populations, because in these populations, consanguineous marriages are frequent. Owing to the relative rarity of these deficiencies, the type and severity of bleeding symptoms, the underlying molecular defects and the actual management of bleeding episodes are not as well established as for haemophilia A and B. This article reviews these disorders in terms of their clinical manifestations and characterization of the molecular defects involved. The general principles of management are also discussed.Keywords: afibrinogenaemia, autosomal recessive disorders, factor VIII, factor XI, factor XIII.


FEBS Letters | 2000

cDNA cloning of turtle prion protein

Stefano Duga; Bice Strumbo; Rosanna Asselta; Fabrizio Ceciliani; Severino Ronchi

Cloning of the cDNA coding for the 270‐residue turtle prion protein is reported. It represents the most remote example thus far described. The entire coding region is comprised in a single exon, while a large intron interrupts the 5′ UTR. The common structural features of the known prion proteins are all conserved in turtle PrP, whose identity degree to mammalian and avian proteins is about 40 and 58%, respectively. The most intriguing feature, unique to the turtle prion, is the presence of an EF‐hand Ca2+ binding motif in the C‐terminal half of the protein.


Haemophilia | 2006

Genetic diagnosis of haemophilia and other inherited bleeding disorders

Flora Peyvandi; G. R. Jayandharan; M. Chandy; Alok Srivastava; S. M. Nakaya; M. J. Johnson; Arthur R. Thompson; Anne Goodeve; Isabella Garagiola; Silvia Lavoretano; Marzia Menegatti; Roberta Palla; Marta Spreafico; Tagliabue L; Rosanna Asselta; Stefano Duga; Pier Mannuccio Mannucci

Summary.  Inherited deficiencies of plasma proteins involved in blood coagulation generally lead to lifelong bleeding disorders, whose severity is inversely proportional to the degree of factor deficiency. Haemophilia A and B, inherited as X‐linked recessive traits, are the most common hereditary hemorrhagic disorders caused by a deficiency or dysfunction of blood coagulation factor VIII (FVIII) and factor IX (FIX). Together with von Willebrands disease, a defect of primary haemostasis, these X‐linked disorders include 95% to 97% of all the inherited deficiencies of coagulation factors. The remaining defects, generally transmitted as autosomal recessive traits, are rare with prevalence of the presumably homozygous forms in the general population of 1:500.000 for FVII deficiency and 1 in 2 million for prothrombin (FII) and factor XIII (FXIII) deficiency. Molecular characterization, carrier detection and prenatal diagnosis remain the key steps for the prevention of the birth of children affected by coagulation disorders in developing countries, where patients with these deficiencies rarely live beyond childhood and where management is still largely inadequate. These characterizations are possible by direct or indirect genetic analysis of genes involved in these diseases, and the choice of the strategy depends on the effective available budget and facilities to achieve a large benefit. In countries with more advanced molecular facilities and higher budget resources, the most appropriate choice in general is a direct strategy for mutation detection. However, in countries with limited facilities and low budget resources, carrier detection and prenatal diagnosis are usually performed by linkage analysis with genetic markers. This article reviews the genetic diagnosis of haemophilia, genetics and inhibitor development, genetics of von Willebrands disease and of rare bleeding disorders.


Journal of Thrombosis and Haemostasis | 2006

The molecular basis of quantitative fibrinogen disorders

Rosanna Asselta; Stefano Duga; Maria Luisa Tenchini

Summary.  Hereditary fibrinogen disorders include type I deficiencies (afibrinogenemia and hypofibrinogenemia, i.e. quantitative defects), with low or unmeasurable levels of immunoreactive protein; and type II deficiencies (dysfibrinogenemia and hypodysfibrinogenemia, i.e. qualitative defects), showing normal or altered antigen levels associated with reduced coagulant activity. While dysfibrinogenemias are in most cases autosomal dominant disorders, type I deficiencies are generally inherited as autosomal recessive traits. Patients affected by congenital afibrinogenemia or severe hypofibrinogenemia may experience bleeding manifestations varying from mild to severe. This review focuses on the genetic bases of type I fibrinogen deficiencies, which are invariantly represented by mutations within the three fibrinogen genes (FGA, FGB, and FGG) coding for the three polypeptide chains Aα, Bβ, and γ. From the inspection of the mutational spectrum of these disorders, some conclusions can be drawn: (i) genetic defects are scattered throughout the three fibrinogen genes, with only few sites appearing to represent relative mutational hot spots; (ii) several different types of genetic lesions and pathogenic mechanisms have been described in affected individuals (including gross deletions, point mutations causing premature termination codons, missense mutations affecting fibrinogen assembly/secretion, and uniparental isodisomy associated with a large deletion); (iii) the possibility to express recombinant fibrinogen mutants in eukaryotic cells is rapidly shedding light into the molecular mechanisms responsible for physiologic and pathologic properties of the molecule; (iv) though mutation analysis of the fibrinogen cluster does not yield precise information for predicting genotype/phenotype correlations, it still provides a valuable tool for diagnosis confirmation, identification of potential carriers, and prenatal diagnosis.


Journal of Thrombosis and Haemostasis | 2006

Inherited defects of coagulation factor V: the hemorrhagic side

Rosanna Asselta; Maria Luisa Tenchini; Stefano Duga

Summary.  Coagulation factor V (FV) is the protein cofactor required in vivo for the rapid generation of thrombin catalyzed by the prothrombinase complex. It also represents a central regulator in the early phases of blood clot formation, as it contributes to the anticoagulant pathway by participating in the downregulation of factor VIII activity. Conversion of precursor FV to either a procoagulant or anticoagulant cofactor depends on the local concentration of procoagulant and anticoagulant enzymes, so that FV may be regarded as a daring tight‐rope walker gently balancing opposite forces. Given this dual role, genetic defects in the FV gene may result in opposite phenotypes (hemorrhagic or thrombotic). Besides a concise description on the structural, procoagulant and anticoagulant properties of FV, this review will focus on bleeding disorders associated with altered levels of this molecule. Particular attention will be paid to the mutational spectrum of type I FV deficiency, which is characterized by a remarkable genetic heterogeneity and by an uneven distribution of mutations throughout the FV gene.


International Journal of Molecular Sciences | 2011

Genetic Association and Altered Gene Expression of Mir-155 in Multiple Sclerosis Patients

Elvezia Maria Paraboschi; Giulia Soldà; Donato Gemmati; Elisa Orioli; Giulia Zeri; Maria Donata Benedetti; Alessandro Salviati; Nadia Barizzone; Maurizio Leone; Stefano Duga; Rosanna Asselta

Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system characterized by chronic inflammation, demyelination, and axonal damage. As microRNA (miRNA)-dependent alterations in gene expression in hematopoietic cells are critical for mounting an appropriate immune response, miRNA deregulation may result in defects in immune tolerance. In this frame, we sought to explore the possible involvement of miRNAs in MS pathogenesis by monitoring the differential expression of 22 immunity-related miRNAs in peripheral blood mononuclear cells of MS patients and healthy controls, by using a microbead-based technology. Three miRNAs resulted >2 folds up-regulated in MS vs controls, whereas none resulted down-regulated. Interestingly, the most up-regulated miRNA (mir-155; fold change = 3.30; P = 0.013) was previously reported to be up-regulated also in MS brain lesions. Mir-155 up-regulation was confirmed by qPCR experiments. The role of mir-155 in MS susceptibility was also investigated by genotyping four single nucleotide polymorphisms (SNPs) mapping in the mir-155 genomic region. A haplotype of three SNPs, corresponding to a 12-kb region encompassing the last exon of BIC (the B-cell Integration Cluster non-coding RNA, from which mir-155 is processed), resulted associated with the disease status (P = 0.035; OR = 1.36, 95% CI = 1.05–1.77), suggesting that this locus strongly deserves further investigations.


Seminars in Thrombosis and Hemostasis | 2013

Congenital Factor XI Deficiency: An Update

Stefano Duga; Ophira Salomon

Severe factor XI (FXI) deficiency is an injury-related bleeding disorder, common in Ashkenazi Jews (with two mutations prevailing), but rare worldwide (with heterogeneous mutations). In the past two decades, more than 220 mutations in the FXI gene have been reported in patients with FXI deficiency, of which 7 showed a founder effect. Inhibitors to FXI were described in patients with null-allele mutations, following exposure to plasma, FXI concentrates, or anti-RhD immunoglobulin. Treatment of patients with severe FXI deficiency remains challenging because factors influencing bleeding risks are still unknown. The use of lower doses of recombinant activated factor VII in comparison with the doses commonly applied in hemophilia A or B seems promising also when assessed in vitro by thrombin generation test. Recently, FXI has been shown to have a separate role in hemostasis and in thrombosis. In animal models, targeting FXI by knocking out the gene or by using FXI-neutralizing antibodies, antisense oligonucleotides, and peptidomimetic inhibitors, prevents arterial and vein thrombosis. The homology between human and murine FXI and the significant antithrombotic effect of FXI deficiency in animal models resulted in the development of a novel approach of targeting FXI for prevention of thrombosis without impairing hemostasis in high-risk patients. The acceptance of FXI as a risk factor for thrombosis is a new concept, and patients with severe FXI deficiency might gain profit during life course.

Collaboration


Dive into the Stefano Duga's collaboration.

Researchain Logo
Decentralizing Knowledge