Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Gherardini is active.

Publication


Featured researches published by Stefano Gherardini.


New Journal of Physics | 2016

Stochastic quantum Zeno by large deviation theory

Stefano Gherardini; Shamik Gupta; F. S. Cataliotti; Augusto Smerzi; Filippo Caruso; Stefano Ruffo

Quantum measurements are crucial to observe the properties of a quantum system, which however unavoidably perturb its state and dynamics in an irreversible way. Here we study the dynamics of a quantum system while being subject to a sequence of projective measurements applied at random times. In the case of independent and identically distributed intervals of time between consecutive measurements, we analytically demonstrate that the survival probability of the system to remain in the projected state assumes a large-deviation (exponentially decaying) form in the limit of an infinite number of measurements. This allows us to estimate the typical value of the survival probability, which can therefore be tuned by controlling the probability distribution of the random time intervals. Our analytical results are numerically tested for Zeno-protected entangled states, which also demonstrates that the presence of disorder in the measurement sequence further enhances the survival probability when the Zeno limit is not reached (as it happens in experiments). Our studies provide a new tool for protecting and controlling the amount of quantum coherence in open complex quantum systems by means of tunable stochastic measurements.


Annalen der Physik | 2017

Quantum Zeno Dynamics Through Stochastic Protocols

Matthias M. Müller; Stefano Gherardini; Filippo Caruso

Quantum measurements play a crucial role in quantum mechanics since they perturb, unavoidably and irreversibly, the state of the measured quantum system. More extremely, the constant observation of a quantum system can even freeze its dynamics to a subspace, effectively truncating the Hilbert space of the system. It represents the quantum version of the famous flying arrow Zeno paradox, and is called quantum Zeno dynamics. In general, it can be obtained by applying frequent consecutive quantum measurements that are equally spaced in time. Here, we introduce time disorder in the measurement sequence, and analytically investigate how this temporal stochasticity may affect the confinement probability of the system in the subspace. As main result, we then exploit how different dissipative and coherent Zeno protocols can be generalized to this stochastic scenario. Finally, our analytical predictions are numerically tested on a paradigmatic spin chain where we find a trade-off between a probabilistic scheme with high fidelity (compared to perfect subspace dynamics) and a deterministic one with a slightly lower fidelity, moving further steps towards new schemes of Zeno-based control for future quantum technologies.


Scientific Reports | 2016

Stochastic quantum Zeno-based detection of noise correlations

Matthias M. Müller; Stefano Gherardini; Filippo Caruso

A system under constant observation is practically freezed to the measurement subspace. If the system driving is a random classical field, the survival probability of the system in the subspace becomes a random variable described by the Stochastic Quantum Zeno Dynamics (SQZD) formalism. Here, we study the time and ensemble average of this random survival probability and demonstrate how time correlations in the noisy environment determine whether the two averages do coincide or not. These environment time correlations can potentially generate non-Markovian dynamics of the quantum system depending on the structure and energy scale of the system Hamiltonian. We thus propose a way to detect time correlations of the environment by coupling a quantum probe system to it and observing the survival probability of the quantum probe in a measurement subspace. This will further contribute to the development of new schemes for quantum sensing technologies, where nanodevices may be exploited to image external structures or biological molecules via the surface field they generate.


arXiv: Quantum Physics | 2017

Ergodicity in randomly perturbed quantum systems

Stefano Gherardini; Cosimo Lovecchio; Matthias M. Müller; Pietro Lombardi; Filippo Caruso; F. S. Cataliotti

The theoretical cornerstone of statistical mechanics is the ergodic assumption that all accessible configurations of a physical system are equally likely. Here we show how such property arises when an open quantum system is continuously perturbed by an external environment effectively observing the system at random times while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically show how the most probable value of the probability for the system to be in a given state eventually deviates from the non-stochastic case when the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.


conference on decision and control | 2015

Moving horizon state estimation for discrete-time linear systems with binary sensors

Giorgio Battistelli; Luigi Chisci; Stefano Gherardini

The paper addresses state estimation for linear discrete-time systems with binary (threshold) measurements. A Moving Horizon Estimation (MHE) approach is undertaken and different estimators, characterised by different choices of the cost function and/or by the possible inclusion of constraints, are proposed. Observability from binary measurements is discussed and stability results are proved for the proposed MHE algorithms. The proposed techniques are also evaluated and compared by means of a simulation example.


arXiv: Quantum Physics | 2018

Reconstructing quantum entropy production to probe irreversibility and correlations

Stefano Gherardini; Matthias M. Müller; Andrea Trombettoni; Stefano Ruffo; Filippo Caruso

One of the major goals of quantum thermodynamics is the characterization of irreversibility and its consequences in quantum processes. Here, we discuss how entropy production provides a quantification of the irreversibility in open quantum systems through the quantum fluctuation theorem. We start by introducing a two-time quantum measurement scheme, in which the dynamical evolution between the measurements is described by a completely positive, trace-preserving (CPTP) quantum map (forward process). By inverting the measurement scheme and applying the time-reversed version of the quantum map, we can study how this backward process differs from the forward one. When the CPTP map is unital, we show that the stochastic quantum entropy production is a function only of the probabilities to get the initial measurement outcomes in correspondence of the forward and backward processes. For bipartite open quantum systems we also prove that the mean value of the stochastic quantum entropy production is sub-additive with respect to the bipartition (except for product states). Hence, we find a method to detect correlations between the subsystems. Our main result is the proposal of an efficient protocol to determine and reconstruct the characteristic functions of the stochastic entropy production for each subsystem. This procedure enables to reconstruct even others thermodynamical quantities, such as the work distribution of the composite system and the corresponding internal energy. Efficiency and possible extensions of the protocol are also discussed. Finally, we show how our findings might be experimentally tested by exploiting the state-of-the-art trapped-ion platforms.


Scientific Reports | 2016

Disorder and dephasing as control knobs for light transport in optical fiber cavity networks

Silvia Viciani; Stefano Gherardini; Manuela Lima; Marco Bellini; Filippo Caruso

Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies.


Therapeutic advances in hematology | 2018

Pharmacokinetic-based prediction of real-life dosing of extended half-life clotting factor concentrates on hemophilia:

Massimo Morfini; Stefano Gherardini

The improvement of clotting factor concentrates (CFCs) has undergone an impressive boost during the last six years. Since 2010, several new recombinant factor (rF)VIII/IX concentrates entered phase I/II/III clinical trials. The improvements are related to the culture of human embryonic kidney (HEK) cells, post-translational glycosylation, PEGylation, and co-expression of the fragment crystallizable (Fc) region of immunoglobulin (Ig)G1 or albumin genes in the manufacturing procedures. The extended half-life (EHL) CFCs allow an increase of the interval between bolus administrations during prophylaxis, a very important advantage for patients with difficulties in venous access. Although the inhibitor risk has not been fully established, phase III studies have provided standard prophylaxis protocols, which, compared with on-demand treatment, have achieved very low annualized bleeding rates (ABRs). The key pharmacokinetics (PK) parameter to tailor patient therapy is clearance, which is more reliable than the half-life of CFCs; the clearance considers the decay rate of the drug concentration–time profile, while the half-life considers only the half concentration of the drug at a given time. To tailor the prophylaxis of hemophilia patients in real-life, we propose two formulae (expressed in terms of the clearance, trough and dose interval between prophylaxis), respectively based on the one- and two-compartmental models (CMs), for the prediction of the optimal single dose of EHL CFCs. Once the data from the time decay of the CFCs are fitted by the one- or two-CMs after an individual PK analysis, such formulae provide to the treater the optimal trade-off among trough and time-intervals between boluses. In this way, a sufficiently long time-interval between bolus administration could be guaranteed for a wider class of patients, with a preassigned level of the trough. Finally, a PK approach using repeated dosing is discussed, and some examples with new EHL CFCs are shown.


Scientific Reports | 2018

Noise-robust quantum sensing via optimal multi-probe spectroscopy

Matthias M. Müller; Stefano Gherardini; Filippo Caruso

The dynamics of quantum systems are unavoidably influenced by their environment, but in turn observing a quantum system (probe) can allow one to measure its environment: Measurements and controlled manipulation of the probe such as dynamical decoupling sequences as an extension of the Ramsey interference measurement allow to spectrally resolve a noise field coupled to the probe. Here, we introduce fast and robust estimation strategies for the characterization of the spectral properties of classical and quantum dephasing environments. These strategies are based on filter function orthogonalization, optimal control filters maximizing the relevant Fisher Information and multi-qubit entanglement. We investigate and quantify the robustness of the schemes under different types of noise such as finite-precision measurements, dephasing of the probe, spectral leakage and slow temporal fluctuations of the spectrum.


Contemporary Physics | 2018

Spontaneous synchronisation and nonequilibrium statistical mechanics of coupled phase oscillators

Stefano Gherardini; Shamik Gupta; Stefano Ruffo

Abstract Spontaneous synchronisation is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collective oscillations at a common frequency. The Kuramoto model provides the basic analytical framework to study spontaneous synchronisation. The model comprises limit-cycle oscillators with distributed natural frequencies interacting through a mean-field coupling. Although more than forty years have passed since its introduction, the model continues to occupy the centre stage of research in the field of non-linear dynamics and is also widely applied to model diverse physical situations. In this brief review, starting with a derivation of the Kuramoto model and the synchronisation phenomenon it exhibits, we summarise recent results on the study of a generalised Kuramoto model that includes inertial effects and stochastic noise. We describe the dynamics of the generalised model from a different yet a rather useful perspective, namely, that of long-range interacting systems driven out of equilibrium by quenched disordered external torques. A system is said to be long-range interacting if the inter-particle potential decays slowly as a function of distance. Using tools of statistical physics, we highlight the equilibrium and nonequilibrium aspects of the dynamics of the generalised Kuramoto model, and uncover a rather rich and complex phase diagram that it exhibits, which underlines the basic theme of intriguing emergent phenomena that are exhibited by many-body complex systems.

Collaboration


Dive into the Stefano Gherardini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Ruffo

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Andrea Trombettoni

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Sara Cacciapuoti

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge