Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Goldwurm is active.

Publication


Featured researches published by Stefano Goldwurm.


Lancet Neurology | 2008

Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study

Daniel G. Healy; Mario Falchi; Sean S. O'Sullivan; Vincenzo Bonifati; Alexandra Durr; Susan Bressman; Alexis Brice; Jan O. Aasly; Cyrus P. Zabetian; Stefano Goldwurm; Joaquim J. Ferreira; Eduardo Tolosa; Denise M. Kay; Christine Klein; David R. Williams; Connie Marras; Anthony E. Lang; Zbigniew K. Wszolek; José Berciano; A. H. V. Schapira; Timothy Lynch; Kailash P. Bhatia; Thomas Gasser; Andrew J. Lees; Nicholas W. Wood

Summary Background Mutations in LRRK2, the gene that encodes leucine-rich repeat kinase 2, are a cause of Parkinsons disease (PD). The International LRRK2 Consortium was established to answer three key clinical questions: can LRRK2-associated PD be distinguished from idiopathic PD; which mutations in LRRK2 are pathogenic; and what is the age-specific cumulative risk of PD for individuals who inherit or are at risk of inheriting a deleterious mutation in LRRK2? Methods Researchers from 21 centres across the world collaborated on this study. The frequency of the common LRRK2 Gly2019Ser mutation was estimated on the basis of data from 24 populations worldwide, and the penetrance of the mutation was defined in 1045 people with mutations in LRRK2 from 133 families. The LRRK2 phenotype was defined on the basis of 59 motor and non-motor symptoms in 356 patients with LRRK2-associated PD and compared with the symptoms of 543 patients with pathologically proven idiopathic PD. Findings Six mutations met the consortiums criteria for being proven pathogenic. The frequency of the common LRRK2 Gly2019Ser mutation was 1% of patients with sporadic PD and 4% of patients with hereditary PD; the frequency was highest in the middle east and higher in southern Europe than in northern Europe. The risk of PD for a person who inherits the LRRK2 Gly2019Ser mutation was 28% at age 59 years, 51% at 69 years, and 74% at 79 years. The motor symptoms (eg, disease severity, rate of progression, occurrence of falls, and dyskinesia) and non-motor symptoms (eg, cognition and olfaction) of LRRK2-associated PD were more benign than those of idiopathic PD. Interpretation Mutations in LRRK2 are a clinically relevant cause of PD that merit testing in patients with hereditary PD and in subgroups of patients with PD. However, this knowledge should be applied with caution in the diagnosis and counselling of patients. Funding UK Medical Research Council; UK Parkinsons Disease Society; UK Brain Research Trust; Internationaal Parkinson Fonds; Volkswagen Foundation; National Institutes of Health: National Institute of Neurological Disorders and Stroke and National Institute of Aging; Udall Parkinsons Disease Centre of Excellence; Pacific Alzheimer Research Foundation Centre; Italian Telethon Foundation; Fondazione Grigioni per il Morbo di Parkinson; Michael J Fox Foundation for Parkinsons Research; Safra Global Genetics Consortium; US Department of Veterans Affairs; French Agence Nationale de la Recherche.


The Lancet | 2005

A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease

Alessio Di Fonzo; Christan F. Rohé; Joaquim J. Ferreira; Hsin H.F. Chien; Laura Vacca; Fabrizio Stocchi; Leonor Correia Guedes; Edito Fabrizio; Mario Manfredi; Nicola Vanacore; Stefano Goldwurm; Guido J. Breedveld; Cristina Sampaio; Giuseppe Meco; Egberto Reis Barbosa; Ben A. Oostra; Vincenzo Bonifati

Mutations in the LRRK2 gene have been identified in families with autosomal dominant parkinsonism. We amplified and sequenced the coding region of LRRK2 from genomic DNA by PCR, and identified a heterozygous mutation (Gly2019 ser) present in four of 61 (6.6%) unrelated families with Parkinsons disease and autosomal dominant inheritance. The families originated from Italy, Portugal, and Brazil, indicating the presence of the mutation in different populations. The associated phenotype was broad, including early and late disease onset. These findings confirm the association of LRRK2 with neurodegeneration, and identify a common mutation associated with dominantly inherited Parkinsons disease.


Neurology | 2007

ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease

A. Di Fonzo; Hsin Fen Chien; M. Socal; S. Giraudo; Cristina Tassorelli; G. Iliceto; Giovanni Fabbrini; Roberto Marconi; Emiliana Fincati; Giovanni Abbruzzese; P. Marini; F. Squitieri; M.W.I.M. Horstink; Pasquale Montagna; A. Dalla Libera; Fabrizio Stocchi; Stefano Goldwurm; Joaquim J. Ferreira; Giuseppe Meco; Emilia Martignoni; Leonardo Lopiano; Laura Bannach Jardim; Ben A. Oostra; Egberto Reis Barbosa; Vincenzo Bonifati; Nicola Vanacore; Edito Fabrizio; N. Locuratolo; C. Scoppetta; Mario Manfredi

Objective: To assess the prevalence, nature, and associated phenotypes of ATP13A2 gene mutations among patients with juvenile parkinsonism (onset <21 years) or young onset (between 21 and 40 years) Parkinson disease (YOPD). Methods: We studied 46 patients, mostly from Italy or Brazil, including 11 with juvenile parkinsonism and 35 with YOPD. Thirty-three cases were sporadic and 13 had positive family history compatible with autosomal recessive inheritance. Forty-two had only parkinsonian signs, while four (all juvenile-onset) had multisystemic involvement. The whole ATP13A2 coding region (29 exons) and exon-intron boundaries were sequenced from genomic DNA. Results: A novel homozygous missense mutation (Gly504Arg) was identified in one sporadic case from Brazil with juvenile parkinsonism. This patient had symptoms onset at age 12, levodopa-responsive severe akinetic-rigid parkinsonism, levodopa-induced motor fluctuations and dyskinesias, severe visual hallucinations, and supranuclear vertical gaze paresis, but no pyramidal deficit nor dementia. Brain CT scan showed moderate diffuse atrophy. Furthermore, two Italian cases with YOPD without atypical features carried a novel missense mutation (Thr12Met, Gly533Arg) in single heterozygous state. Conclusions: We confirm that ATP13A2 homozygous mutations are associated with human parkinsonism, and expand the associated genotypic and clinical spectrum, by describing a homozygous missense mutation in this gene in a patient with a phenotype milder than that initially associated with ATP13A2 mutations (Kufor-Rakeb syndrome). Our data also suggest that ATP13A2 single heterozygous mutations might be etiologically relevant for patients with YOPD and further studies of this gene in Parkinson disease are warranted.


Annals of Neurology | 2009

SNCA Variants Are Associated with Increased Risk for Multiple System Atrophy

Sonja W. Scholz; Henry Houlden; Claudia Schulte; Manu Sharma; Abi Li; Daniela Berg; Anna Melchers; Reema Paudel; J. Raphael Gibbs; Javier Simón-Sánchez; C Paisan-Ruiz; Jose Bras; Jinhui Ding; Honglei Chen; Bryan J. Traynor; Sampath Arepalli; Ryan Zonozi; Tamas Revesz; Janice L. Holton; Nicholas W. Wood; Andrew J. Lees; Wolfgang H. Oertel; Ullrich Wüllner; Stefano Goldwurm; Maria Teresa Pellecchia; Thomas Illig; Olaf Riess; Hubert H. Fernandez; Ramon L. Rodriguez; Michael S. Okun

To test whether the synucleinopathies Parkinsons disease and multiple system atrophy (MSA) share a common genetic etiology, we performed a candidate single nucleotide polymorphism (SNP) association study of the 384 most associated SNPs in a genome‐wide association study of Parkinsons disease in 413 MSA cases and 3,974 control subjects. The 10 most significant SNPs were then replicated in additional 108 MSA cases and 537 controls. SNPs at the SNCA locus were significantly associated with risk for increased risk for the development of MSA (combined p = 5.5 × 1012; odds ratio 6.2). Ann Neurol 2009;65:610–614


European Journal of Human Genetics | 2005

Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson's disease in Italians

Daniele Ghezzi; Cecilia Marelli; Alessandro Achilli; Stefano Goldwurm; Gianni Pezzoli; Paolo Barone; Maria Teresa Pellecchia; Paolo Stanzione; Livia Brusa; Anna Rita Bentivoglio; Ubaldo Bonuccelli; Lucia Petrozzi; Giovanni Abbruzzese; Roberta Marchese; Pietro Cortelli; Daniela Grimaldi; Paolo Martinelli; Carlo Ferrarese; Barbara Garavaglia; Simonetta Sangiorgi; Valerio Carelli; Antonio Torroni; Alberto Albanese; Massimo Zeviani

It has been proposed that European mitochondrial DNA (mtDNA) haplogroups J and K, and their shared 10398G single-nucleotide polymorphism (SNP) in the ND3 gene, are protective from Parkinsons disease (PD). We evaluated the distribution of the different mtDNA haplogroups in a large cohort of 620 Italian patients with adult-onset (>50, <65 years of age) idiopathic PD vs two groups of ethnic-matched controls. Neither the frequencies of haplogroup J nor that of 10398G were significantly different. However, the frequency of haplogroup K was significantly lower in PD. Stratification by sex and age indicated that the difference in the distribution of haplogroup K was more prominent in >50year old males. In spite of the common 10398G SNP, haplogroups J and K belong to widely diverging mitochondrial clades, a consideration that may explain the different results obtained for the two haplogroups in our cohorts. Our study suggests that haplogroup K might confer a lower risk for PD in Italians, corroborating the idea that the mitochondrial oxidative phosphorylation pathway is involved in the susceptibility to idiopathic PD.


Journal of Medical Genetics | 2005

The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor

Stefano Goldwurm; A. Di Fonzo; Erik J. Simons; Christan F. Rohé; Michela Zini; Margherita Canesi; Silvana Tesei; Anna Zecchinelli; Angelo Antonini; Claudio Mariani; Nicoletta Meucci; Giorgio Sacilotto; Francesca Sironi; G Salani; Joaquim J. Ferreira; Hsin Fen Chien; Edito Fabrizio; Nicola Vanacore; A. Dalla Libera; Fabrizio Stocchi; C. Diroma; Paolo Lamberti; Cristina Sampaio; Giuseppe Meco; Egberto Reis Barbosa; Aida M. Bertoli-Avella; Guido J. Breedveld; Ben A. Oostra; Gianni Pezzoli; Vincenzo Bonifati

Background: Mutations in the gene Leucine-Rich Repeat Kinase 2 (LRRK2) were recently identified as the cause of PARK8 linked autosomal dominant Parkinson’s disease. Objective: To study recurrent LRRK2 mutations in a large sample of patients from Italy, including early (<50 years) and late onset familial and sporadic Parkinson’s disease. Results: Among 629 probands, 13 (2.1%) were heterozygous carriers of the G2019S mutation. The mutation frequency was higher among familial (5.1%, 9/177) than among sporadic probands (0.9%, 4/452) (p<0.002), and highest among probands with one affected parent (8.7%, 6/69) (p<0.001). There was no difference in the frequency of the G2019S mutation in probands with early v late onset disease. Among 600 probands, one heterozygous R1441C but no R1441G or Y1699C mutations were detected. None of the four mutations was found in Italian controls. Haplotype analysis in families from five countries suggested that the G2019S mutation originated from a single ancient founder. The G2019S mutation was associated with the classical Parkinson’s disease phenotype and a broad range of onset age (34 to 73 years). Conclusions: G2019S is the most common genetic determinant of Parkinson’s disease identified so far. It is especially frequent among cases with familial Parkinson’s disease of both early and late onset, but less common among sporadic cases. These findings have important implications for diagnosis and genetic counselling in Parkinson’s disease.


European Journal of Human Genetics | 2006

Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson's disease

Alessio Di Fonzo; Cristina Tassorelli; Michele De Mari; Hsin F. Chien; Joaquim J. Ferreira; Christan F. Rohé; Giulio Riboldazzi; Angelo Antonini; Gianni Albani; Alessandro Mauro; Roberto Marconi; Giovanni Abbruzzese; Leonardo Lopiano; Emiliana Fincati; Marco Guidi; P. Marini; Fabrizio Stocchi; Marco Onofrj; Vincenzo Toni; Michele Tinazzi; Giovanni Fabbrini; Paolo Lamberti; Nicola Vanacore; Giuseppe Meco; Petra Leitner; Ryan J. Uitti; Zbigniew K. Wszolek; Thomas Gasser; Erik J. Simons; Guido J. Breedveld

Mutations in the gene leucine-rich repeat kinase 2 (LRRK2) have been recently identified in families with Parkinsons disease (PD). However, the prevalence and nature of LRRK2 mutations, the polymorphism content of the gene, and the associated phenotypes remain poorly understood. We performed a comprehensive study of this gene in a large sample of families with Parkinsons disease compatible with autosomal dominant inheritance (ADPD). The full-length open reading frame and splice sites of the LRRK2 gene (51 exons) were studied by genomic sequencing in 60 probands with ADPD (83% Italian). Pathogenic mutations were identified in six probands (10%): the heterozygous p.G2019S mutation in four (6.6%), and the heterozygous p.R1441C mutation in two (3.4%) probands. A further proband carried the heterozygous p.I1371 V mutation, for which a pathogenic role could not be established with certainty. In total, 13 novel disease-unrelated variants and three intronic changes of uncertain significance were also characterized. The phenotype associated with LRRK2 pathogenic mutations is the one of typical PD, but with a broad range of onset ages (mean 55.2, range 38–68 years) and, in some cases, slow disease progression. On the basis of the comprehensive study in a large sample, we conclude that pathogenic LRRK2 mutations are frequent in ADPD, and they cluster in the C-terminal half of the encoded protein. These data have implications both for understanding the molecular mechanisms of PD, and for directing the genetic screening in clinical practice.


American Journal of Human Genetics | 2008

Mutations in the GIGYF2 (TNRC15) Gene at the PARK11 Locus in Familial Parkinson Disease

Corinne Lautier; Stefano Goldwurm; Alexandra Durr; Barbara Giovannone; William G. Tsiaras; Gianni Pezzoli; Alexis Brice; Robert J. Smith

The genetic basis for association of the PARK11 region of chromosome 2 with familial Parkinson disease (PD) is unknown. This study examined the GIGYF2 (Grb10-Interacting GYF Protein-2) (TNRC15) gene, which contains the PARK11 microsatellite marker with the highest linkage score (D2S206, LOD 5.14). The 27 coding exons of the GIGYF2 gene were sequenced in 123 Italian and 126 French patients with familial PD, plus 131 Italian and 96 French controls. A total of seven different GIGYF2 missense mutations resulting in single amino acid substitutions were present in 12 unrelated PD index patients (4.8%) and not in controls. Three amino acid insertions or deletions were found in four other index patients and absent in controls. Specific exon sequencing showed that these ten sequence changes were absent from a further 91 controls. In four families with amino acid substitutions in which at least one other PD case was available, the GIGYF2 mutations (Asn56Ser, Thr112Ala, and Asp606Glu) segregated with PD. There were, however, two unaffected carriers in one family, suggesting age-dependent or incomplete penetrance. One index case (PD onset age 33) inherited a GIGYF2 mutation (Ile278Val) from her affected father (PD onset age 66) and a previously described PD-linked mutation in the LRRK2 gene (Ile1371Val) from her affected mother (PD onset age 61). The earlier onset and severe clinical course in the index patient suggest additive effects of the GIGYF2 and LRRK2 mutations. These data strongly support GIGYF2 as a PARK11 gene with a causal role in familial PD.


Annals of Neurology | 2011

Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis

Michael A. van Es; Helenius J. Schelhaas; Paul W.J. van Vught; Nicola Ticozzi; Peter Andersen; Ewout J.N. Groen; Claudia Schulte; Hylke M. Blauw; Max Koppers; Frank P. Diekstra; Katsumi Fumoto; Ashley Lyn Leclerc; Pamela Keagle; Bastiaan R. Bloem; H. Scheffer; Bart F L Van Nuenen; Marka van Blitterswijk; Wouter van Rheenen; Anne Marie Wills; Patrick Lowe; Guo-fu Hu; Wenhao Yu; Hiroko Kishikawa; David Wu; Rebecca D. Folkerth; Claudio Mariani; Stefano Goldwurm; Gianni Pezzoli; Philip Van Damme; Robin Lemmens

Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.


Neurology | 2007

Evaluation of LRRK2 G2019S penetrance Relevance for genetic counseling in Parkinson disease

Stefano Goldwurm; M. Zini; L. Mariani; S. Tesei; R. Miceli; F. Sironi; M. Clementi; Vincenzo Bonifati; Gianni Pezzoli

We report the results of a family-based study of LRRK2 G2019S penetrance in Parkinson disease. We studied 19 families identified through the analysis of unrelated consecutive patients. The cumulative incidence of the disease was 15% at 60 years, 21% at 70 years, and 32% at 80 years. This study provides accurate estimates of G2019S penetrance by minimizing the selection bias.

Collaboration


Dive into the Stefano Goldwurm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michela Zini

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Roberto Cilia

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge