Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Grosso is active.

Publication


Featured researches published by Stefano Grosso.


Journal of Clinical Investigation | 2010

Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus

Federica Di Nicolantonio; Sabrina Arena; Josep Tabernero; Stefano Grosso; Francesca Molinari; Teresa Macarulla; Mariangela Russo; Carlotta Cancelliere; Davide Zecchin; Luca Mazzucchelli; Takehiko Sasazuki; Senji Shirasawa; Massimo Geuna; Milo Frattini; José Baselga; Margherita Gallicchio; Stefano Biffo; Alberto Bardelli

Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors.


Human Molecular Genetics | 2011

Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model

Sara Ricciardi; Elena Boggio; Stefano Grosso; Giuseppina Lonetti; Greta Forlani; Gilda Stefanelli; Eleonora Calcagno; Noemi Morello; Nicoletta Landsberger; Stefano Biffo; Tommaso Pizzorusso; Maurizio Giustetto; Vania Broccoli

Rett syndrome (RTT) is a neurodevelopmental disorder with no efficient treatment that is caused in the majority of cases by mutations in the gene methyl-CpG binding-protein 2 (MECP2). RTT becomes manifest after a period of apparently normal development and causes growth deceleration, severe psychomotor impairment and mental retardation. Effective animal models for RTT are available and show morphofunctional abnormalities of synaptic connectivity. However, the molecular consequences of MeCP2 disruption leading to neuronal and synaptic alterations are not known. Protein synthesis regulation via the mammalian target of the rapamycin (mTOR) pathway is crucial for synaptic organization, and its disruption is involved in a number of neurodevelopmental diseases. We investigated the phosphorylation of the ribosomal protein (rp) S6, whose activation is highly dependent from mTOR activity. Immunohistochemistry showed that rpS6 phosphorylation is severely affected in neurons across the cortical areas of Mecp2 mutants and that this alteration precedes the severe symptomatic phase of the disease. Moreover, we found a severe defect of the initiation of protein synthesis in the brain of presymptomatic Mecp2 mutant that was not restricted to a specific subset of transcripts. Finally, we provide evidence for a general dysfunction of the Akt/mTOR, but not extracellular-regulated kinase, signaling associated with the disease progression in mutant brains. Our results indicate that defects in the AKT/mTOR pathway are responsible for the altered translational control in Mecp2 mutant neurons and disclosed a novel putative biomarker of the pathological process. Importantly, this study provides a novel context of therapeutic interventions that can be designed to successfully restrain or ameliorate the development of RTT.


Biochemical Journal | 2008

PKCβII modulates translation independently from mTOR and through RACK1

Stefano Grosso; Viviana Volta; Leonardo A. Sala; Marina Vietri; Pier Carlo Marchisio; Dorit Ron; Stefano Biffo

RACK1 (receptor for activated C kinase 1) is an abundant scaffolding protein, which binds active PKCbetaII (protein kinase C betaII) increasing its activity in vitro. RACK1 has also been described as a component of the small ribosomal subunit, in proximity to the mRNA exit channel. In the present study we tested the hypothesis that PKCbetaII plays a specific role in translational control and verified whether it may associate with the ribosomal machinery. We find that specific inhibition of PKCbetaI/II reduces translation as well as global PKC inhibition, but without affecting phosphorylation of mTOR (mammalian target of rapamycin) targets. These results suggest that PKCbetaII acts as a specific PKC isoform affecting translation in an mTOR-independent fashion, possibly close to the ribosomal machinery. Using far-Western analysis, we found that PKCbetaII binds ribosomes in vitro. Co-immunoprecipitation studies indicate that a small but reproducible pool of PKCbetaII is associated with membranes containing ribosomes, suggesting that in vivo PKCbetaII may also physically interact with the ribosomal machinery. Polysomal profiles show that stimulation of PKC results in an increased polysomes/80S ratio, associated with a shift of PKCbetaII to the heavier part of the gradient. A RACK1-derived peptide that inhibits the binding of active PKCbetaII to RACK1 reduces the polysomes/80S ratio and methionine incorporation, suggesting that binding of PKCbetaII to RACK1 is important for PKC-mediated translational control. Finally, down-regulation of RACK1 by siRNA (small interfering RNA) impairs the PKC-mediated increase of translation. Taken together the results of the present study show that PKCbetaII can act as a specific PKC isoform regulating translation, in an mTOR-independent fashion, possibly close to the ribosomal machinery.


Cell Cycle | 2011

Translational control by 80S formation and 60S availability: the central role of eIF6, a rate limiting factor in cell cycle progression and tumorigenesis.

Daniela Brina; Stefano Grosso; Annarita Miluzio; Stefano Biffo

Ribosome biogenesis and translation can be simplified as the processes of generating ribosomes and their use for decoding mRNA into a protein. Ribosome biogenesis has been efficiently studied in unicellular organisms like the budding yeast, allowing us a deep and basic knowledge of this process in growing cells. Translation has been modeled in vitro and in unicellular organisms. These studies have given us an important insight into the mechanisms and evolutionarily conserved aspects of ribosome biology. However, we advocate the need of the direct study of these processes in multicellular organisms. Analysis of ribosome biogenesis and translation in vivo in Metazoa and mammalian models is emerging and unveils the unexpected consequences of perturbed ribosome biogenesis and translation. Here, we will describe how one factor, eIF6, plays a crucial role both in the generation of the large ribosomal subunit and its availability for translation. From there, we will make specific conclusions on the physiological relevance of eIF6 in 80S formation, cell cycle progression and disease, raising the point that the control of gene expression may occur at the unexpected level of the large ribosomal subunit. In the future, the modulation of eIF6 binding to the 60S may be pharmacologically exploited to reduce the growth of cancer cells or ameliorate the phenotype of SDS syndrome.


Biochemical and Biophysical Research Communications | 2008

Eukaryotic ribosomes host PKC activity.

Stefano Grosso; Viviana Volta; Marina Vietri; Chiara Gorrini; Pier Carlo Marchisio; Stefano Biffo

PKC isoform betaII modulates translation and can be recruited on ribosomes via its scaffold RACK1 (receptor for activated protein kinase C 1), which resides on the 40S ribosomal subunit. However, whether a PKC activity exists on the ribosome is not yet demonstrated. We purified native ribosomes by two different techniques, which avoid stripping of initiation factors and other associated proteins. In both cases, purified ribosomes are able to phosphorylate a specific PKC substrate, MARCKS (Myristoylated Alanine-Rich C-Kinase Substrate). MARCKS phosphorylation is switched on by treatment with PKC agonist PMA (Phorbol 12-Myristate 13-Acetate). Consistently, the broad PKC inhibitor BMI (Bisindolyl Maleimide I) abrogates MARCKS phosphorylation. These data show that native ribosomes host active PKC and hence allow the phosphorylation of ribosome-associated substrates like initiation factors and mRNA binding proteins.


PLOS ONE | 2011

Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1

Stefano Grosso; Elisa Pesce; Daniela Brina; Anne Beugnet; Fabrizio Loreni; Stefano Biffo

Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next.


Current Biology | 2017

RTN3 Is a Novel Cold-Induced Protein and Mediates Neuroprotective Effects of RBM3

Amandine Bastide; Diego Peretti; John R. P. Knight; Stefano Grosso; Ruth V. Spriggs; Xavier Pichon; Thomas Sbarrato; Anne Roobol; Jo Roobol; Davide Vito; Martin Bushell; Tobias von der Haar; C. Mark Smales; Giovanna R. Mallucci; Anne E. Willis

Summary Cooling and hypothermia are profoundly neuroprotective, mediated, at least in part, by the cold shock protein, RBM3. However, the neuroprotective effector proteins induced by RBM3 and the mechanisms by which mRNAs encoding cold shock proteins escape cooling-induced translational repression are unknown. Here, we show that cooling induces reprogramming of the translatome, including the upregulation of a new cold shock protein, RTN3, a reticulon protein implicated in synapse formation. We report that this has two mechanistic components. Thus, RTN3 both evades cooling-induced translational elongation repression and is also bound by RBM3, which drives the increased expression of RTN3. In mice, knockdown of RTN3 expression eliminated cooling-induced neuroprotection. However, lentivirally mediated RTN3 overexpression prevented synaptic loss and cognitive deficits in a mouse model of neurodegeneration, downstream and independently of RBM3. We conclude that RTN3 expression is a mediator of RBM3-induced neuroprotection, controlled by novel mechanisms of escape from translational inhibition on cooling.


Oncotarget | 2015

Expression and activity of eIF6 trigger Malignant Pleural Mesothelioma growth in vivo

Annarita Miluzio; Stefania Oliveto; Elisa Pesce; Luciano Mutti; Bruno Murer; Stefano Grosso; Sara Ricciardi; Daniela Brina; Stefano Biffo

eIF6 is an antiassociation factor that regulates the availability of active 80S. Its activation is driven by the RACK1/PKCβ axis, in a mTORc1 independent manner. We previously described that eIF6 haploinsufficiency causes a striking survival in the Eμ-Myc mouse lymphoma model, with lifespans extended up to 18 months. Here we screen for eIF6 expression in human cancers. We show that Malignant Pleural Mesothelioma tumors (MPM) and a MPM cell line (REN cells) contain high levels of hyperphosphorylated eIF6. Enzastaurin is a PKC beta inhibitor used in clinical trials. We prove that Enzastaurin treatment decreases eIF6 phosphorylation rate, but not eIF6 protein stability. The growth of REN, in vivo, and metastasis are reduced by either Enzastaurin treatment or eIF6 shRNA. Molecular analysis reveals that eIF6 manipulation affects the metabolic status of malignant mesothelioma cells. Less glycolysis and less ATP content are evident in REN cells depleted for eIF6 or treated with Enzastaurin (Anti-Warburg effect). We propose that eIF6 is necessary for malignant mesothelioma growth, in vivo, and can be targeted by kinase inhibitors.


Current Biology | 2017

Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf)

Tatyana Chernova; Fiona Murphy; Sara Galavotti; Xiao-Ming Sun; Ian R. Powley; Stefano Grosso; Anja Schinwald; Joaquin Zacarias-Cabeza; Kate Dudek; David Dinsdale; John Le Quesne; Jonathan Bennett; Apostolos Nakas; Peter Greaves; Craig A. Poland; Ken Donaldson; Martin Bushell; Anne E. Willis; Marion MacFarlane

Summary Mesothelioma is a fatal tumor of the pleura and is strongly associated with asbestos exposure. The molecular mechanisms underlying the long latency period of mesothelioma and driving carcinogenesis are unknown. Moreover, late diagnosis means that mesothelioma research is commonly focused on end-stage disease. Although disruption of the CDKN2A (INK4A/ARF) locus has been reported in end-stage disease, information is lacking on the status of this key tumor suppressor gene in pleural lesions preceding mesothelioma. Manufactured carbon nanotubes (CNTs) are similar to asbestos in terms of their fibrous shape and biopersistent properties and thus may pose an asbestos-like inhalation hazard. Here we show that instillation of either long CNTs or long asbestos fibers into the pleural cavity of mice induces mesothelioma that exhibits common key pro-oncogenic molecular events throughout the latency period of disease progression. Sustained activation of pro-oncogenic signaling pathways, increased proliferation, and oxidative DNA damage form a common molecular signature of long-CNT- and long-asbestos-fiber-induced pathology. We show that hypermethylation of p16/Ink4a and p19/Arf in CNT- and asbestos-induced inflammatory lesions precedes mesothelioma; this results in silencing of Cdkn2a (Ink4a/Arf) and loss of p16 and p19 protein, consistent with epigenetic alterations playing a gatekeeper role in cancer. In end-stage mesothelioma, silencing of p16/Ink4a is sustained and deletion of p19/Arf is detected, recapitulating human disease. This study addresses the long-standing question of which early molecular changes drive carcinogenesis during the long latency period of mesothelioma development and shows that CNT and asbestos pose a similar health hazard.


Cell Death & Differentiation | 2016

Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease

T Chernova; Xiao-Ming Sun; Ian R. Powley; S Galavotti; Stefano Grosso; F A Murphy; G J Miles; L Cresswell; Alexey Antonov; J Bennett; A Nakas; David Dinsdale; Kelvin Cain; Martin Bushell; Anne E. Willis; Marion MacFarlane

Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the ‘gatekeeper’ in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies.

Collaboration


Dive into the Stefano Grosso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne E. Willis

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fiona Murphy

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annarita Miluzio

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Daniela Brina

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Apostolos Nakas

University Hospitals of Leicester NHS Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge